Polymorphism of Mg-monohydrate sulfate kieserite under pressure and its occurrence on giant icy Jovian satellites.

1Johannes M.Meusburger,1Martin Ende,1Philipp Matzinger,1Dominik Talla,1Ronald Miletich,1Manfred Wildner
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2019.113459]
1Institut für Mineralogie und Kristallographie, Althanstraße 14, 1090 Wien, Austria
Copyright Elsevier

The high-pressure behaviour of hydrated magnesium sulfate kieserite, MgSO4⋅H2O, has been investigated on isothermal compression at T = 295 K up to 8.3 GPa hydrostatic pressure. The crystal properties of synthetic endmember single crystals were investigated using a high-pressure diamond anvil cell by means of in-situ X-ray diffraction and vibrational spectroscopy methods. The experimental study reveals a second-order phase transition from the monoclinic (C2/c) α-phase to a triclinic (P) β-form at a transition pressure of 2.72 GPa. Elastic properties as determined from precise lattice parameters yield static elasticities as described by third-order Birch-Murnaghan equations of state with V0 = 355.5(4) ų, K0 = 48.1(5) GPa, K’ = 8.1(6) for the low-pressure polymorph (α-MgSO4⋅H2O), and V0 = 355.8(1.8) ų, K0 = 49.3(5.5) GPa, K’ = 4.8(1.0) for the high-pressure polymorph (β-MgSO4⋅H2O). The nature of the phase transition and its reversibility on pressure release make it seem unlikely that the β-polymorph can be recovered at surface conditions on any icy satellite, although in the context of impact events it is proposed to exist, but only on a limited time scale before re-transforming to α-MgSO4⋅H2O. With respect to the icy mantles of Ganymede and Callisto, the depth profile of Ganymede following the established thermal gradients suggest a stability field only for α-MgSO4⋅H2O being relevant to the presumable conditions in the icy mantle. In contrast, the depth profile for Callisto, as corresponding to maximum pressures of approximately 5 GPa, crosses the α-to-β-transition boundary and make the high-pressure polymorph a promising candidate rock-forming mineral for the deep icy mantle of the outermost Galilean moon. In particular the material parameters reported for the α and β form of MgSO4⋅H2O are fundamental to compute the icy mantle dynamics and accurately determine the radial density structure in models of Ganymede and Callisto.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s