Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen

Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2019.09.041]
1Planetary Materials Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K
2Imaging and Analysis Centre, Natural History Museum, Cromwell Road, London SW7 5BD, U.K
Copyright Elsevier

The rare CI carbonaceous chondrites are the most aqueously altered and chemically primitive meteorites but due to their porous nature and high abundance of volatile elements are susceptible to terrestrial weathering. The Ivuna meteorite, type specimen for the CI chondrites, is the largest twentieth-century CI fall and probably the CI chondrite least affected by terrestrial alteration that is available for study. The main mass of Ivuna (BM2008 M1) has been stored in a nitrogen atmosphere at least since its arrival at the Natural History Museum (NHM), London, in 2008 (70 years after its fall) and could be considered the most pristine CI chondrite stone. We report the mineralogy, petrography and bulk elemental composition of BM2008 M1 and a second Ivuna stone (BM1996 M4) stored in air within wooden cabinets. We find that both Ivuna stones are breccias consisting of multiple rounded, phyllosilicate-rich clasts that formed through aqueous alteration followed by impact processing. A polished thin section of BM2008 M1 analysed immediately after preparation was found to contain sulphate-bearing veins that formed when primary sulphides reacted with oxygen and atmospheric water. A section of BM1996 M4 lacked veins but had sulphate grains on the surface that formed in ≤6 years, ∼3 times faster than previous reports for CI chondrite sections. Differences in the extent of terrestrial alteration recorded by BM2008 M1 and BM1996 M4 probably reflect variations in the post-recovery curation history of the stones prior to entering the NHM collection, and indicate that where possible pristine samples of hydrated carbonaceous should be kept out of the terrestrial environment in a stable environment to avoid modification. The bulk elemental composition of the two Ivuna stones show some variability due to their heterogeneous nature but in general are similar to previous analyses of CI chondrites. We combine our elemental abundances with literature values to calculate a new average composition for the Ivuna meteorite, which we find is in good agreement with existing compilations of element compositions in the CI chondrites and the most recent solar photospheric abundances.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s