Cosmic ray effects on the isotope composition of hydrogen and noble gases in lunar samples: Insights from Apollo 12018

1Evelyn Füri,1Laurent Zimmermann,1Etienne Deloule,2Reto Trappitsch
Earth and Planetary Science Letters 550, 116550 Link to Article []
1Centre de Recherches Pétrographiques et Géochimiques, Université de Lorraine, CNRS, F-54000 Nancy, France
2Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, 7000 East Ave, L-231, Livermore, CA 94550, USA
Copyright Elsevier

Exposure of rocks and regolith to solar (SCR) and galactic cosmic rays (GCR) at the Moon’s surface results in the production of ‘cosmogenic’ deuterium and noble gas nuclides at a rate that depends on a complex set of parameters, such as the energy spectrum and intensity of the cosmic ray flux, the chemical composition, size, and shape of the target as well as the shielding depth. As the effects of cosmic rays on the D production in lunar samples remain poorly understood, we determine here the D content and noble gas (He-Ne-Ar) characteristics of nominally anhydrous mineral (olivine and pyroxene) grains and rock fragments, respectively, from different documented depths (0 to ≥4.8 cm) within Apollo olivine basalt 12018. Deuterium concentrations, determined by secondary ion mass spectrometry, and cosmogenic 3He, 21Ne, and 38Ar abundances, measured by CO2 laser extraction static mass spectrometry, are constant over the depth range investigated. Neon isotope ratios (20Ne/22Ne ≈0.86 and 21Ne/22Ne ≈0.85) of the cosmogenic endmember are comparable to the theoretical signature of GCR-produced neon. These observations indicate that the presence of significant amounts of SCR nuclides in the studied sub-samples can be ruled out. Hence, D within the olivines and pyroxenes must have been predominantly produced in situ by GCR-induced spallation reactions during exposure at the lunar surface. Comparison of the amount of D with the 21Ne (184 ± 26 Ma) or 38Ar (193 ± 25 Ma) exposure ages yields a D production rate that is in good agreement with the value of mol(g rock)−1Ma−1 from Füri et al. (2017). These results confirm that cosmic ray effects can substantially alter the hydrogen isotope (D/H) ratio of indigenous ‘water’ in returned extraterrestrial samples and meteorites with long exposure ages.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s