Separate Silicate and Carbonaceous Solids Formed from Mixed Atomic and Molecular Species Diffusing in Neon Ice

1Gaël Rouillé,1Cornelia Jäger,2Thomas Henning
The Astrophysical Journal 892,96 Link to Article [DOI]
1Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany
2Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

The formation and growth of refractory matter on pre-existing interstellar dust grain surfaces was studied experimentally by annealing neon-ice matrices in which potential precursors of silicate grains (Mg and Fe atoms, SiO and SiO2 molecules) and of solid carbon (C n molecules, n = 2–10) were initially isolated. Other molecules, mainly O3, CO, CO2, C3O, and H2O, were embedded at the same time in the matrices. The annealing procedure caused the cold dopants to diffuse and interact in the neon ice. Monitoring the procedure in situ with infrared spectroscopy revealed the disappearance of the silicon oxide and carbon molecules at temperatures lower than 13 K, and the rise of the Si–O stretching band of silicates. Ex situ electron microscopy confirmed the formation of silicate grains and showed that their structure was amorphous. It also showed that amorphous carbon matter was formed simultaneously next to the silicate grains, the two materials being chemically separated. The results of the experiments support the hypothesis that grains of complex silicates and of carbonaceous materials are reformed in the cold interstellar medium, as suggested by astronomical observations and evolution models of cosmic dust masses. Moreover, they show that the potential precursors of one material do not combine with those of the other at cryogenic temperatures, providing us with a clue as to the separation of silicates and carbon in interstellar grains.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s