Evidence for Asteroid Scattering and Distal Solar System Solids From Meteorite Paleomagnetism

1,2James F. J. Bryson,2Benjamin P. Weiss,2Eduardo A. Lima,3Jérôme Gattacceca,4William S. Cassata
The Astrophysical Journal 892, 126 Link to Article [DOI
1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
3CNRS, Aix Marseille Université, IRD, Coll France, INRA, CEREGE, Aix-en-Provence, France
4Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Asteroid-sized bodies are predicted to have been scattered throughout the solar system following gravitational interactions with the giant planets. This process could have delivered water-rich small bodies to the inner solar system. However, evidence from the meteorite record supporting this scattering is limited due to difficulties in recovering the formation distance of meteorite parent bodies from laboratory measurements. Moreover, ancient millimeter-sized solids that formed in the inner solar system (calcium–aluminum-rich inclusions (CAIs) and chondrules) have also been proposed to have migrated throughout the solar system, which could have been key to their survival. Our understanding of the driving mechanisms, distances, and timings involved in this motion is also restricted for the same reasons. Here, we address these limitations by recovering the formation distance of the parent asteroid of the Tagish Lake meteorite from measurements of its natural remanent magnetization. We find that this meteorite experienced an ancient field intensity <0.15 μT. Accounting for the average effect of a tilted parent body rotation axis and possible uncertainties associated with the remanence acquisition mechanism, this result argues that the Tagish Lake parent body formed at >8–13 au, suggesting this body originates from the distal solar system. Tagish Lake came to Earth from the asteroid belt which, combined with our recovered formation distance, suggests that some small bodies traveled large distances throughout the solar system. Moreover, Tagish Lake contains CAIs and chondrules, indicating that these solids were capable of traveling to the distal solar system within just a few million years.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s