1Lydie Bonal,2Jérôme Gattacceca, 1,3Alexandre Garenne,1JolanthaEschrig, 2PierreRochette,2 Lisa Krämer Ruggiu
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.03.009]
1Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, CNRS CNES, 38000 Grenoble (France)
2CNRS, Aix Marseille Univ, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France
3Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
Copyright Elsevier

This paper focuses on the post-accretion history of CV3 chondrites, through a combination of petrographic and mineralogical characterization, magnetic measurements, spectral (Raman and Infrared) and thermo-gravimetric analysis of 31 meteorites (including 7 falls, 21 Antarctic and 3 non-Antarctic finds) spanning a wide metamorphic range.
We classify the 21 Antarctic chondrites and the Bukhara fall into the CVRed, CVOxA, and CVOxB subgroups. We establish quantitative parameters relevant for this sub-classification. In comparison to CVOx, CVRed chondrites are characterized by (i) a lower abundance of matrix, (ii) a higher abundance of metal, (iii) the presence of Ni-poor sulfides. In comparison to CVOxB, CVOxA are characterized by (i) similar matrix abundance, (ii) a higher abundance of metal, (iii) the presence of metal almost exclusively under the form of awaruite, (iv) lower Ni content of sulfides, (v) lower magnetic susceptibility and saturation remanence.
Both CVOx (CVOxA and CVOxB) and CVRed experienced aqueous alteration, and contain oxyhydroxides and phyllosilicates. We show that the abundance of these hydrated secondary minerals observed today in individual CV chondrites decreases with their peak metamorphic temperature. This is interpreted either as partial dehydration of these secondary minerals or limited hydration due to the rapid exhaustion of the water reservoir during parent body thermal metamorphism. Moreover, the lower abundance of oxyhydroxides (that have a lower thermal stability than phyllosilicates and may in large part postdate the peak of thermal metamorphism) in more metamorphosed CV chondrites is interpreted as lower availability of aqueous fluids during retrograde metamorphism in these meteorites.
Lastly, we show that in comparison to CVOxB, CVOxA are systematically (i) more metamorphosed, (ii) less hydrated, (iii) depleted in ferromagnetic minerals, (iv) but enriched in metal in the form of secondary awaruite. CVOxA may be thermally metamorphosed CVOxB. CVRed are significantly different from CVOx (matrix abundances, alteration products, opaque minerals), but span the same wide metamorphic range. This could be indicative of a laterally heterogeneous CV parent body, or suggest the existence of distinct parent bodies for CVOx and CVRed chondrites.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s