Primordial heavy noble gases in the pristine Paris carbonaceous chondrite

David V. BEKAERT1*, Yves MARROCCHI1, Alex MESHIK2, Laurent REMUSAT3, and Bernard MARTY1
Meteoritics & Planetary Science (in Press) Link to Article []
1Centre de Recherches Petrographiques et Geochimiques, CRPG-CNRS, Universite de Lorraine, UMR 7358, 15 rue NotreDame des Pauvres, BP 20, 54501 Vandoeuvre-les-Nancy, France
2Department of Physics, Washington University, 1 Brookings Drive, Saint Louis, Missouri 63130, USA
3Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie (IMPMC), UMR CNRS 7590 – Sorbonne, Universites -UPMC – IRD – Museum National d’Histoire Naturelle, 57 rue Cuvier, Case 52, 75231 Paris Cedex 5, France
Published by arrangement with John Wiley & Sons

The Paris carbonaceous chondrite represents the most pristine carbonaceous chondrite, providing a unique opportunity to investigate the composition of early solar system materials prior to the onset of significant aqueous alteration. A dual origin (namely from the inner and outer solar system) has been demonstrated for water in the Paris meteorite parent body (Piani et al. 2018). Here, we aim to evaluate the contribution of outer solar system (cometary‐like) water ice to the inner solar system water ice using Xe isotopes. We report Ar, Kr, and high‐precision Xe isotopic measurements within bulk CM 2.9 and CM 2.7 fragments, as well as Ne, Ar, Kr, and Xe isotope compositions of the insoluble organic matter (IOM). Noble gas signatures are similar to chondritic phase Q with no evidence for a cometary‐like Xe component. Small excesses in the heavy Xe isotopes relative to phase Q within bulk samples are attributed to contributions from presolar materials. CM 2.7 fragments have lower Ar/Xe relative to more pristine CM 2.9 fragments, with no systematic difference in Xe contents. We conclude that Kr and Xe were little affected by aqueous alteration, in agreement with (1) minor degrees of alteration and (2) no significant differences in the chemical signature of organic matter in CM 2.7 and CM 2.9 areas (Vinogradoff et al. 2017). Xenon contents in the IOM are larger than previously published data of Xe in chondritic IOM, in line with the Xe component in Paris being pristine and preserved from Xe loss during aqueous alteration/thermal metamorphism.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s