Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets

1,2Yuto Kidokoro, 2Koichiro Umemoto, 2Kei Hirose, 3Yasuo Ohishi
American Mineralogist 102, 2230-2234 Link to Article [DOI]
1Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
2Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
3Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
Copyright: The Mineralogical Society of America

We have investigated the phase transition in SiC between the zinc-blende and rock-salt structures at high pressure and temperature in a laser-heated diamond-anvil cell. Results demonstrate that the transition occurs at 74 GPa and 2100 K with a 21% density increase, reflecting the coordination number rising from four to six. In addition, our ab initio calculations show that the boundary has a negative Clapeyron slope of −4.0 MPa/K at 2000 K. The experimentally determined phase boundary is located between those predicted by GGA and B3LYP functional. This transition may take place inside carbon-rich extrasolar planets, forming a boundary with a large density jump. Since SiC is rigid and highly thermally conductive, thermal convection in an SiC-dominant layer is not likely to occur. Nevertheless, the convection may be possible if planet interiors include both silicon carbide and silicate, and in this case the phase transition could affect the style of thermal convection.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s