The valence and coordination of titanium in ordinary and enstatite chondrites

1Steven B. Simon, 1,2Stephen R. Sutton, 1, 3Lawrence Grossman
Geochimica et Cosmochmica Acta (in Press)  Link to Article [doi:10.1016/j.gca.2016.06.013]
1Dept. of the Geophysical Sciences, 5734 S. Ellis Ave, The University of Chicago, Chicago, IL 60637
2Center for Advanced Radiation Sources (CARS), 5640 S. Ellis Ave, The University of Chicago, Chicago, IL 60637
3The Enrico Fermi Institute, 5640 S. Ellis Ave, The University of Chicago, Chicago, IL 60637
Copyright Elsevier

One way to better understand processes related to chondrite metamorphism is to evaluate changes in chondrite features as a function of petrologic type. Toward this end the valence and coordination of Ti in olivine and pyroxene in suites of ordinary (H, L, and LL) and enstatite (EH and EL) chondrites of types 3 through 6 have been determined with XANES spectroscopy. Trivalent Ti, typically 10-40% of the Ti in the analytical volumes, was found in ordinary chondrites of all types, despite the stability of oxidized iron in the samples. Average valences and the proportions of Ti that are in tetrahedral coordination generally decrease with increasing grade between types 3.0 and 3.5, increase from 3.5 to 4, and then level off. These trends are consistent with previous studies of chondrite oxidation states using other methods, except here the onset of oxidation is observed at a lower type, ∼3.5, than previously indicated (4). These results are also consistent with previous suggestions that oxidation of higher-grade ordinary chondrite samples involved exposure to aqueous fluids from melting of accreted ice. In the enstatite chondrites, typically 20-90% of the Ti is trivalent Ti, so it is reduced compared to Ti in the ordinary chondrites. Valence decreases slightly from petrologic type 3 to 4 and increases from 4 to 6, but no increases in tetrahedral coordination with petrologic type are observed, indicating a redox environment or process distinct from that of ordinary chondrite metamorphism. The presence of Ti4+ in the E chondrites supports previous suggestions that they formed from oxidized precursors that underwent reduction. Unlike ordinary chondrites, enstatite chondrites are thought to have been derived from a body or bodies that did not accrete ice, which could account for their different valence-coordination-petrologic type relationships. The hypothesis, based on observations of unmetamorphosed chondrules and supported by laboratory experiments, that equilibration of Ti valence is sluggish compared to that of Fe could account for the coexistence of reduced Ti and oxidized Fe seen in chondrites of all petrologic types.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s