Searching for mantle dunite candidates around the Imbrium basin among the boulder population using high resolution mineral mapping

1Lingzhi Sun,1Paul G. Lucey
Earth and Planetary Science Letters (in Press) Link to Article []
1Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
Copyright Elsevier

Dunite is a rock type composed of more than 90% olivine, and Mg-rich dunite has been suggested to be a rock type that may represent upper mantle of the Moon. Dunite rocks might have been exposed on basin rings by basin-forming impacts. However, previous studies reported no unambiguous evidence of mantle dunite from lunar samples and remote sensing detections. In this work, we applied a mantle boulder candidate search algorithm around the Imbrium basin using radiative transfer modeling and datasets from Moon Mineralogy Mapper and Multiband Imager. We found two boulders consisting of ∼90 vol% olivine with 95 Mg# on Copernicus central peaks, which are possible mantle dunite excavated by Imbrium basin or Copernicus crater. We also found that non-dunite boulders on Copernicus central peak show a large variation in olivine content (8–51 vol%). We infer this is a result of the complicated process of Mg-suite formation in the lower crust or mechanical mixing during the Imbrium basin forming event. The algorithm we presented has a great potential to be applied to lunar basins for a global search for mantle candidate boulders.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s