Precise mapping of the moon with the Clementine ultraviolet/visible camera

1Emerson J. Speyerer,1Mark S. Robinson,1Aaron Boyd,1Victor H. Silva,2Samuel Lawrence
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2023.115506]
1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85282, United States of America
2NASA Lyndon B. Johnson Space Center, Houston, TX 77058, United States of America
Copyright Elsevier

The Ultraviolet/Visible (UVVIS) camera on the Clementine spacecraft provided a global, multispectral view of the Moon. Scientists commonly use individual observations and derived products (optical maturity, mineral abundance, etc.) over 25 years later, addressing questions concerning the composition and relative age of surface features. However, since the mission concluded, our knowledge of lunar topography and the locations of features on the surface have improved with results from the Lunar Reconnaissance Orbiter (LRO) and Gravity Recovery and Interior Laboratory (GRAIL) missions. Before this work, cross-mission comparisons were impaired by spatial offsets between the derived products, which are as large as 2.5 km in some regions. Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images, acquired under similar lighting conditions, were used as a cartographic reference. We used image-based feature-matching algorithms to automatically derive control points to improve the positional accuracy of each UVVIS observation with the LROC WAC basemap. From ground control points, we calculate a precise camera model (focal length, optical distortion, etc.) for the UVVIS camera and update the pointing for each UVVIS image. Using the updated geometric information and projecting the UVVIS image to the LOLA global shape model, we map the five-band multispectral UVVIS mosaic, the optical maturity map, and FeO and TiO2 abundance maps. We also analyze pitch observations of the polar regions to investigate the influence phase angle has on the derived optical maturity. The new images are registered to the GRAIL-based LRO geodetic framework within a WAC pixel (Ground Sampling Distance ~75 m; average UVVIS sigma0 = 0.084), creating a foundational geospatial data product that does not require any manual interpretation or nonlinear warping of map products to align with the current lunar reference frame.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s