Shidian meteorite, a new fall analog of near-Earth asteroid (101955) Bennu

1,2Yan Fan et al. (>10)
Meteoritics & Planetary Science (in Press) Link to Article []
1State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an, 710069 China
2Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081 China
Published by arrangement with John Wiley & Sons

Shidian is a recent meteorite which fell in Yunnan province, China, on November 27, 2017, and has been classified as a CM2 chondrite. Petrography, mineralogy, oxygen and chromium isotopic composition, reflectance spectrum, and density studies of Shidian are reported in this study. Clasts with different aqueous alteration degree, two type 1 clasts with nontypical CM petrography, and one metamorphic clast are observed in Shidian. Mineralogically, Shidian main body consists of phyllosilicates (∼70 vol%), forsterite (∼13 vol%), fayalitic olivine, carbonates, sulfide, high-Ca pyroxene, magnetite framboids, and Fe-Ni metal. The average electron microprobe analysis (EMPA) analytical totals of phyllosilicates are 84.07 ± 1.75 wt%, with average FeO/SiO2 of tochilinite–cronstedtite intergrowths (TCIs) in different clasts ranging from 1.18 to 3.29. The bulk geochemical composition is characterized by flat rare earth element pattern, and by depletion of highly volatile elements. The whole rock oxygen isotopic composition is −0.51 ± 0.73‰, 5.44 ± 1.01‰, and −3.38 ± 0.20‰ for δ17O, δ18O, and Δ17O, respectively, with bulk chromium isotopic composition as ε54Cr = 1.00 ± 0.11. The grain density, bulk density, and porosity are 2.758 ± 0.008 g cm−3, 2.500 ± 0.004 g cm−3, and 9.37 ± 0.59%, respectively. The reflectance spectrum shows “blue” (negative) continuum slope across the visible and near-infrared range, with characteristic absorption features (such as 0.765, 0.923, and 1.160 μm for phyllosilicates). These characteristics indicate that Shidian is an unheated, brecciated CM chondrite and may be an analog of asteroid Bennu.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s