New minerals in type A inclusions from Allende and clues to processes in the early solar system: Paqueite, Ca3TiSi2(Al,Ti,Si)3O14, and burnettite, CaVAlSiO6

1Chi Ma,1John R. Beckett,2François L. H. Tissot,1George R. Rossman
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13826]
1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125 USA
2The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125 USA
Published by arrangement with John Wiley & Sons

Paqueite (Ca3TiSi2[Al,Ti,Si]3O14; IMA 2013-053) and burnettite (CaVAlSiO6; IMA 2013-054) are new refractory minerals, occurring as euhedral to subhedral crystals within aluminous melilite in A-WP1, a type A Ca-Al-rich inclusion, and CGft-12, a compact type A (CTA) from the Allende CV3 carbonaceous chondrite. Type paqueite from A-WP1 has an empirical formula of (Ca2.91Na0.11)Ti4+Si2(Al1.64Ti4+0.90Si0.24V3+0.12Sc0.07Mg0.03)O14, with a trigonal structure in space group P321 and cell parameters a = 7.943 Å, c = 4.930 Å, V = 269.37 Å3, and Z = 1. Paqueite’s general formula is Ca3TiSi2(Al,Ti,Si)3O14 and the endmember formula is Ca3TiSi2(Al2Ti)O14. Type burnettite from CGft-12 has an empirical formula of Ca1.01(V3+0.56Al0.25Mg0.18)(Si1.19Al0.81)O6. It assumes a diopside-type C2/c structure with a = 9.80 Å, b = 8.85 Å, c = 5.36 Å, β = 105.6°, V = 447.7 Å3, and Z = 4. Burnettite’s general formula is Ca(V,Al,Mg)AlSiO6 and the endmember formula is CaVAlSiO6. Paqueite and burnettite likely originated as condensates, but the observed grains may have crystallized from local V-rich melts produced during a later thermal event. For CGft-12, the compositions of paqueite, clinopyroxene, and perovskite suggest that type As drew from two distinct populations of grains. Hibonite grains drew from multiple populations, but these were well mixed and not equilibrated prior to incorporation into type A host melilite.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s