Formation of chondrule fine-grained rims from local nebular reservoirs

1,2Gabriel A. Pinto,2Yves Marrocchi,3Emmanuel Jacquet,1Felipe Olivares
Meteoritics & Planetary Science (in Press) Link to Article []
1Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama, Copayapu 485, Copiapó, Chile
2Université de Lorraine, CNRS, CRPG, UMR 7358, Vandœuvre-lès-Nancy, 54501 France
3Instituto de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum national d’Histoire naturelle, Sorbonne Université, CNRS, CP52, 57 rue Cuvier, Paris, 75005 France
Published by arrangement with John Wiley & Sons

Chondrules are commonly surrounded by fine-grained rims (FGRs) whose origin remains highly debated; both nebular and parent body settings are generally proposed. Deciphering their origin, however, is of fundamental importance as they could clarify the matrix–chondrule relationship and thus constrain the formation and transport conditions of chondrules in the circumsolar disk. Here, we report a systematic survey of FGRs in CO, CM, CV, and CR chondrites; we compare (i) the thickness of FGRs to the size of their host chondrules and (ii) the frequency of FGRs to the modal abundance of matrix in the respective host chondrites. Although FGRs show textural variations depending on the petrologic type of the considered chondrites, our data show a positive correlation between apparent rim thickness and the radius of the host chondrule in all chondrite groups. We also found a positive correlation between the evaluated percentages of rimmed chondrules and the modal abundance of matrix material in the chondrites. We show that this relationship could not result from parent body processes, whether matrix compaction or FGR fragmentation. Therefore, we propose that FGRs were accreted under warm conditions at the end of chondrule-forming events. Our results thus support (i) a nebular origin for FGR, whose abundances are directly related to the abundance of available dust in regions of chondrite accretion; and (ii) the accretion of chondrites from locally formed chondrules and matrix, suggesting limited radial transport in the protoplanetary disk.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s