1,2Yan Fan,1Shijie Li,1Shen Liu,3Hao Peng,4Guangming Song,5Thomas Smith
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13789]
1State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an, 710069 China
2Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081 China
3Xi’an Astronautics Composite Materials Institute, Xian, 710025 China
4Beijing Institute of Spacecraft Environment Engineering, Beijing, 100094 China
5State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
Published by arrangement with John Wiley & Sons
In recent years, numerous meteorites have been collected in desert areas in northern and western China. We describe the environment of some deserts in this region, and the petrological and mineralogical characteristics of 49 of the recovered ordinary chondrites. They consist of 14 H chondrites, 33 L chondrites, and 2 LL chondrites. Of the 300 desert meteorites with approved names from deserts in China, there have been 287 ordinary chondrites, six iron meteorites, one CO3 chondrite, one diogenite, one ureilite, one brachinite, one eucrite, and one EL7 chondrite. Forty-two dense meteorite collection areas (DCAs) have been defined, mainly located in northern and western China. The meteorites collected are mainly from the Kumtag DCA, followed by the Alatage Mountain, Loulan Yizhi, Hami, and Lop Nur DCAs. After tentative pairing of the meteorites, we estimate that the ordinary chondrites account for 72% of the desert meteorites collected in China, with 63 H chondrites, 133 L chondrites, and 20 LL chondrites. This dominance of L chondrites contrasts with other deserts, which may result from the insufficient collection or bias in pairing of ordinary chondrites. The mass distribution of meteorites from different DCAs in China is consistent with that from DCAs in Africa. Based on the available information and the meteorite flux model proposed by previous studies, we suggest that the time over which meteorites have been accumulated in the southern Hami DCA might be >10 kyr. Therefore, the southern Hami region is currently the most suitable area for meteorite collection in China.