Conditions of chondrule formation in ordinary chondrites

1Maxime Piralla,1Johan Villeneuve,2Valentina Batanova,3Emmanuel Jacquet,1Yves Marrocchi
Geochimica et Cosmochimica Acta (in Press) Link to Article []
1Université de Lorraine, CNRS, CRPG, UMR 7358, Vandœuvre-lès-Nancy 54500, France
2Université Grenoble Alpes, ISTerre, CNRS, UMR 5275, Grenoble 38000, France
3Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum national d’Histoire naturelle, Sorbonne Université, CNRS, UMR 7590, CP52, 57 rue Cuvier, Paris 75005, France
Copyright Elsevier

Chondrules are sub-millimetric spheroids that are ubiquitous in chondrites and whose formation mechanism remains elusive. Textural and oxygen isotopic characteristics of chondrules in carbonaceous chondrites (CCs) suggest that they result from the recycling of isotopically heterogeneous early-condensed precursors via gas-melt interactions. Here, we report high-resolution X-ray elemental maps and in situ O isotopic analyses of FeO-poor, olivine-rich chondrules from ordinary chondrites (OCs) to compare the conditions of chondrule formation in these two main classes of chondrites. OC chondrules show minor element (e.g., Ti, Al) zonings at both the chondrule and individual olivine grain scales. Considering the entire isotopic data set, our data define a mass-independent correlation, with olivine grains showing O isotopic variations spanning more than 40 ‰. Though 16O-rich relict olivine grains were identified in OC chondrules, they are much less abundant than in CC chondrules. They appear as two types: (i) those with low minor element abundances and Δ17O < −15 ‰ and (ii) those with varying minor element abundances and less negative Δ17O values averaging −5.5 ‰. The host olivine grains exhibit mass-dependent O isotopic variations within individual chondrules. Our results reveal that similar processes (precursor recycling and interactions between chondrule melts and a SiO- and Mg-rich gas) established the observed features of OC and CC chondrules. The mass-dependent isotopic variations recorded by host olivine grains result from kinetic effects induced by complex evaporation/recondensation processes during the gas-melt interactions. This suggests that OC chondrules formed through enhanced recycling processes, in good agreement with the lower abundances of relict olivine grains in OC chondrules compared to CC chondrules. We use the Δ18O = δ18O − δ17O parameter to demonstrate that there is no genetic relationship between CC and OC chondrules, suggesting limited radial transport in the protoplanetary disk. Finally, to the first order, the Δ18O−Δ17O diagram may allow the non-carbonaceous vs. carbonaceous origin of a given chondrule to be deciphered.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s