Asteroid break-ups and meteorite delivery to Earth the past 500 million years

1Fredrik Terfelt,1,2Birger Schmitz
Proceedings of the National Academy of Sciences of teh United States of America 118, e2020977118 Link to Article [https://doi.org/10.1073/pnas.2020977118]
1Astrogeobiology Laboratory, Department of Physics, Lund University, 221 00 Lund, Sweden;
2Robert A. Pritzker Center for Meteoritics and Polar Studies, Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605

The meteoritic material falling on Earth is believed to derive from large break-up or cratering events in the asteroid belt. The flux of extraterrestrial material would then vary in accordance with the timing of such asteroid family-forming events. In order to validate this, we investigated marine sediments representing 15 time-windows in the Phanerozoic for content of micrometeoritic relict chrome-spinel grains (>32 μm). We compare these data with the timing of the 15 largest break-up events involving chrome-spinel–bearing asteroids (S- and V-types). Unexpectedly, our Phanerozoic time windows show a stable flux dominated by ordinary chondrites similar to today’s flux. Only in the mid-Ordovician, in connection with the break-up of the L-chondrite parent body, do we observe an anomalous micrometeorite regime with a two to three orders-of-magnitude increase in the flux of L-chondritic chrome-spinel grains to Earth. This corresponds to a one order-of-magnitude excess in the number of impact craters in the mid-Ordovician following the L-chondrite break-up, the only resolvable peak in Phanerozoic cratering rates indicative of an asteroid shower. We argue that meteorites and small (<1-km-sized) asteroids impacting Earth mainly sample a very small region of orbital space in the asteroid belt. This selectiveness has been remarkably stable over the past 500 Ma.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s