Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses

Icarus (in Press) Link to Article []
1Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States of America
2Jacobs, NASA Johnson Space Center, Mail Code X13, Houston, TX 77058, United States of America
3Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904, United States of America
4ARES, Mail Code X13, NASA Johnson Space Center, Houston, TX 77058, United States of America
Copyright Elsevier

We performed H+ and He+ ion irradiation experiments on slabs of the Murchison CM2 meteorite to simulate solar wind irradiation of carbonaceous asteroids. Two separate 6 mm × 6 mm regions were irradiated with 1 keV H+ and 4 keV He+, respectively, to fluences of 8.1 × 1017 ions/cm2 for H+ and 1 × 1018 ions/cm2 for He+. Unirradiated and irradiated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS), visible to near infrared spectroscopy (VNIR; 0.35–2.5 μm), and microprobe two-step laser-desorption mass spectrometry (μL2MS). We also performed analytical field-emission scanning transmission electron microscopy (FE-STEM) of focused ion beam (FIB) cross-sections extracted from olivine grains and matrix material within the H+- and He+-irradiated regions. In situ XPS analyses suggest that ion irradiation results in the removal of most surface carbon and the partial reduction of surface iron to lower oxidation states. In response to He+-irradiation, we observed reddening and brightening of reflectance spectra, which is a departure from typical lunar-style space weathering. Additionally, H+- and He+-irradiation have opposing effects on organic carbon content: H+-irradiation increases the abundance of some free organic species by breaking down macromolecular material while He+-irradiation causes a decrease in overall organic content by cleaving bonds and sputtering constituent atoms. This suggests that solar wind H+-irradiation and solar wind He+-irradiation change the organic functional group chemistry of asteroidal regolith in different ways. In contrast to some previous experimental space weathering studies, we observe an increase in H2O and OH− abundances in our sample in response to both types of ion irradiation. FE-STEM and energy dispersive X-ray spectroscopy (EDX) analyses show complete amorphization of matrix phyllosilicates in ion-affected rims, partial amorphization of olivine, and changes in Si and Mg concentrations at and/or near the surface. We discuss the implications of these results for understanding the complex nature of space weathering of primitive, carbon-rich asteroids and for analyzing future returned samples from carbonaceous asteroids Bennu and Ryugu.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s