Formation of Tridymite and Evidence for a Hydrothermal History at Gale Crater, Mars

1A.S.Yen et al. (>10)
Journal of Geophysical Research, Planets (in Press) Link to Article [https://doi.org/10.1029/2020JE006569]
1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109Published by arrangement with John Wiley & Sons

In August 2015, the Curiosity Mars rover discovered tridymite, a high‐temperature silica polymorph, in Gale crater. The existing model for its occurrence suggests erosion and detrital sedimentation from silicic volcanic rocks in the crater rim or central peak. The chemistry and mineralogy of the tridymite‐bearing rocks, however, are not consistent with silicic volcanic material. Using data from Curiosity, including chemical composition from the Alpha Particle X‐ray Spectrometer, mineralogy from the CheMin instrument, and evolved gas and isotopic analyses from the Sample Analysis at Mars instrument, we show that the tridymite‐bearing rocks exhibit similar chemical patterns with silica‐rich alteration halos which crosscut the stratigraphy. We infer that the tridymite formed in‐place through hydrothermal processes and show additional chemical and mineralogical results from Gale crater consistent with hydrothermal activity occurring after sediment deposition and lithification.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s