An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (4.565 Ga)

1Shaunna M. Morrison, 1Robert M. Hazen
American Mineralogist 105, 1508-1535 Link to Article [http://www.minsocam.org/msa/ammin/toc/2020/Abstracts/AM105P1508.pdf]
1Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U. S. A.
Copyright: The Mineralogical Society of America

The evolutionary system of mineralogy relies on varied physical and chemical attributes, including
trace elements, isotopes, solid and fluid inclusions, and other information-rich characteristics, to understand processes of mineral formation and to place natural condensed phases in the deep-time context
of planetary evolution. Part I of this system reviewed the earliest refractory phases that condense at T > 1000 K within the turbulent expanding and cooling atmospheres of highly evolved stars. Part II considers the subsequent formation of primary crystalline and amorphous phases by condensation in three distinct mineral-forming environments, each of which increased mineralogical diversity and distribution prior to the accretion of planetesimals >4.5 billion years ago.
(1) Interstellar molecular solids: Varied crystalline and amorphous molecular solids containing primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the interstellar medium (10 < T < 20 K; P < 10–13 atm). With the possible exception of some nanoscale organic condensates preserved in carbonaceous meteorites, the existence of these phases is documented primarily by telescopic observations of absorption and emission spectra of interstellar molecules in radio, microwave, or infrared wavelengths. (2) Nebular and circumstellar ice: Evidence from infrared observations and laboratory experiments suggest that cubic H2O (“cubic ice”) condenses as thin crystalline mantles on oxide and silicate dust grains in cool, distant nebular and circumstellar regions where T ~100 K. (3) Primary condensed phases of the inner solar nebula: The earliest phase of nebular mineralogy saw the formation of primary refractory minerals that solidified through high-temperature condensation (1100 < T < 1800 K; 10–6 < P < 10–2 atm) in the solar nebula more than 4.565 billion years ago. These earliest mineral phases originating in our solar system formed prior to the accretion of planetesimals and are preserved in calcium-aluminum-rich inclusions, ultra-refractory inclusions, and amoeboid olivine aggregates.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s