Dynamic Potential Sputtering of Lunar Analog Material by Solar Wind Ions

1Paul S.Szabo et al. (>10)
The Astrophysical Jounal 891, 100 Link to Article [DOI
1Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria

Pyroxenes ((Ca, Mg, Fe, Mn)2Si2O6) belong to the most abundant rock forming minerals that make up the surface of rocky planets and moons. Therefore, sputtering of pyroxenes by solar wind ions has to be considered as a very important process for modifying the surface of planetary bodies. This is increased due to potential sputtering by multiply charged ions; to quantify this effect, sputtering of wollastonite (CaSiO3) by He2+ ions was investigated. Thin films of CaSiO3 deposited on a quartz crystal microbalance were irradiated, allowing precise, in situ, real time sputtering yield measurements. Experimental results were compared with SDTrimSP simulations, which were improved by adapting the used input parameters. On freshly prepared surfaces, He2+ ions show a significant increase in sputtering, as compared to equally fast He+ ions. However, the yield decreases exponentially with fluence, reaching a lower steady state after sputtering of the first few monolayers. Experiments using Ar8+ ions show a similar behavior, which is qualitatively explained by a preferential depletion of surface oxygen due to potential sputtering. A corresponding quantitative model is applied, and the observed potential sputtering behaviors of both He and Ar are reproduced very well. The results of these calculations support the assumption that mainly O atoms are affected by potential sputtering. Based on our findings, we discuss the importance of potential sputtering for the solar wind eroding the lunar surface. Estimated concentration changes and sputtering yields are both in line with previous modeling for other materials, allowing a consistent perspective on the effects of solar wind potential sputtering.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s