Xenon systematics of individual lunar zircons, a new window on the history of the lunar surface

1Carolyn A.Crow,2Sarah A.Crowther,3Kevin D.McKeegan,2Grenville Turner,4Henner Busemann,2Jamie D.Gilmour
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.06.019]
1Department of Geological Sciences, University of Colorado Boulder
2School of Earth and Environmental Sciences, The University of Manchester
3Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles
4ETH Zürich
Copyright Elsevier

We demonstrate a new way of investigating the processing of the lunar surface (and other planetary regoliths) that combines XeS-XeN ages (based on uranium fission) in individual zircons with their xenon isotopic record of solar wind and cosmic ray exposure. We report the first xenon isotopic analyses of individual lunar zircons (from Apollo 14 soil and breccias samples). Parallel analyses of a suite of zircons from the Vredefort impact structure in South Africa revealed XeS-XeN ages that agree well with U-Pb systematics, suggesting that the diffusion kinetics of xenon and lead in zircon are similar in the pressure-temperature environment of sub-basin floors. In contrast, all Apollo 14 zircons examined exhibit XeS-XeN ages markedly younger than the associated U-Pb and 207Pb-206Pb ages, and soil zircons with 207Pb-206Pb ages greater than 3900 Ma produced an abundance of XeS-XeN ages <1000 Ma. The young ages cannot be explained by thermal neutron irradiation on the lunar surface, and diurnal heating is unlikely to cause preferential loss of xenon. As such these young soil zircon ages likely record regolith gardening processes. The breccia zircons typically record older ages, >2400 Ma, suggesting that these samples may be useful for investigating ancient events and regolith processing at an earlier epoch. However, none of the zircons contain xenon from now-extinct 244Pu implying that either the samples have completely degassed since ∼3900 Ma or that the initial Pu/U ratio of the Moon is lower than that on Earth. We also describe a methodology for conducting component deconvolution that can be applied to multi-isotopes systems beyond xenon. We have also determined new xenon isotopic yields from rare earth element spallation in the lunar environment and high precision yields for neutron induced fission of 235U in geologic samples.

The hydrogen isotopic composition of lunar melt inclusions: An interplay of complex magmatic and secondary processes

1A.Stephant,1,2M.Anand,3R.Tartèse,1X.Zhao,1G.Degli-Alessandrini,1I.A.Franchi
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.06.017]
1School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
2Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK
3Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
Copyright Elsevier

Since the discovery of water (a term collectively used for the total H, OH and H2O) in samples derived from the lunar interior, heterogeneity in both water concentration and its hydrogen isotopic ratio has been documented for various lunar phases. However, most previous studies have focused on measurements of hydrogen in apatite, which typically forms during the final stages of melt crystallisation. To better constrain the abundance and isotopic composition of water in the lunar interior, we have targeted melt inclusions (MIs), in mare basalts, that are trapped during the earliest stages of melt crystallisation. Melt inclusions are expected to have suffered minimal syn- or post-eruption modification processes, and, therefore, should provide more accurate information about the history of H in the lunar interior. Here, we report H/18O measurements as calibrated water concentrations, and hydrogen isotope ratios obtained by secondary ion mass spectrometry (SIMS) in a large set of basaltic MIs from Apollo mare basalts 10020, 10058, 12002, 12004, 12008, 12020, 12040, 14072 and 15016. Our results demonstrate that partially crystallised MIs from lunar basalts and their parental melts were influenced by a variety of processes such as hydrogen diffusion, degassing and assimilation of material affected by solar-wind implantation. Deconvolution of these processes show that lunar basaltic parental magmas were heterogeneous and had a broadly chondritic hydrogen isotopic composition with δD values varying between -200 and +200 ‰.

Evidence for diverse lunar melt compositions and mixing of the pre-3.9 Ga crust from zircon chemistry

1Dustin Trail,2Mélanie Barboni,3Kevin D.McKeegan
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.06.018]
1Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14627, USA
2School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
3Department of Earth, Planetary, and Space Sciences, University of California – Los Angeles, Los Angeles CA, 90095 USA
Copyright Elsevier

Lunar samples collected during Apollo missions are typically impact-related breccias or regolith that contain amalgamations of rocks and minerals with various origins (e.g., products of igneous differentiation, mantle melting, and/or impact events). The largest intact pre-Nectarian (∼≥3.92 Ga) fragments of igneous rock contained within the breccia and regolith rarely exceed 1 cm in size, and they often show evidence for impact recrystallization. This widespread mixing of disparate materials makes unraveling the magmatic history of pre-Nectarian period fraught with challenges. To address this issue, we combine U-Pb geochronology of Apollo 14 zircons (207Pb-206Pb ages from 3.93 to 4.36 Ga) with zircon trace element chemistry and thermodynamic models. Zircon crystallization temperatures are calculated with Ti-in-zircon thermometry after presenting new titania and silica activity models for lunar melts. We also present rare earth element (REE), P, actinide, and Mg+Fe+Al concentrations. While REE patterns and P yield little information about the parent melt origins of these out-of-context grains, U and Th concentrations are highly variable among pre-4.2 Ga zircons when compared to younger grains. Thus, the distribution of heat-producing radioactive elements in melt sources pervading the early lunar crust was heterogenous. Melt composition variation is confirmed by zircon Al concentrations and thermodynamic modeling that reveal at least two dominant magma signatures in the pre-4.0 Ga zircon population. One inferred magma type has a high alumina activity. This magma likely assimilated Feldspathic Highlands Terrane (FHT) anorthosites, though impact-generated melts of an alumina-rich target rock is a viable alternative. The other magma signature bears more similarities to KREEP basalts from the Procellarum KREEP Terrane (PKT), reflecting lower apparent alumina activities. Melt diversity seems to disappear after 4.0 Ga, with zircon recording magma compositions that largely fall in-between the two main groups found for pre-4.0 Ga samples. We interpret <4 Ga zircons to have formed from a mixture of PKT- and FHT-like rocks, consistent with the upper ∼15 km of the crust being thoroughly mixed and re-melted by basin-forming impacts during the pre-Nectarian period.

The micrometeorite flux to Earth during the earliest Paleogene reconstructed in the Bottaccione section (Umbrian Apennines), Italy

1Samuele Boschi,1Birger Schmitz,1Ellinor Martin,1Fredrik Terfelt
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13539]
1Astrogeobiology Laboratory, Division of Nuclear Physics, Department of Physics, Lund University, Lund, Sweden
Published by arrangement with John Wiley & Sons

Based on sediment‐dispersed extraterrestrial spinel grains in the Bottaccione limestone section in Italy, we reconstructed the micrometeorite flux to Earth during the early Paleocene. From a total of 843 kg of limestone, 86 extraterrestrial spinel grains (12 grains > 63 μm, and 74 in the 32–63 μm fraction) have been recovered. Our results indicate that the micrometeorite flux was not elevated during the early Paleocene. Ordinary chondrites dominated over achondritic meteorites similar to the recent flux, but H chondrites dominated over L and LL chondrites (69%, 22%, and 9%, respectively). This H‐chondrite dominance is similar to that recorded within an enigmatic 3He anomaly (70, 27, and 3%) in the Turonian, but different from just before this 3He anomaly and in the early Cretaceous, where ratios are similar to the recent flux (~45%, 45%, and 10%). The K‐Ar isotopic ages of recently fallen H chondrites indicate a small impact event on the H‐chondrite parent body ~50 to 100 Ma ago. We tentatively suggest that this event is recorded by the Turonian 3He anomaly, resulting in an H‐chondrite dominance up to the Paleocene. Our sample spanning the 20 cm above the Cretaceous–Paleogene (K–Pg) boundary did not yield any spinel grains related to the K–Pg boundary impactor.

Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion

1Michael W. Broadley,2Peter H. Barry,1David V. Bekaert,1David J. Byrne,3Antonio Caracausi,4Christopher J. Ballentine,1Bernard Marty
Proceedings of the National Academy of Sciences of the Unites States of America (in Press) Link to Article [https://doi.org/10.1073/pnas.200390711]
1Centre de Recherches Pétrographiques et Géochimiques, UMR 7358 CNRS—Université de Lorraine, BP 20, F-54501 Vandoeuvre-lès-Nancy, France;
2Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;
3Instituto Nazionale di Geofisica e Vulcanologia, 90146 Palermo, Italy;
4Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom

Identifying the origin of noble gases in Earth’s mantle can provide crucial constraints on the source and timing of volatile (C, N, H2O, noble gases, etc.) delivery to Earth. It remains unclear whether the early Earth was able to directly capture and retain volatiles throughout accretion or whether it accreted anhydrously and subsequently acquired volatiles through later additions of chondritic material. Here, we report high-precision noble gas isotopic data from volcanic gases emanating from, in and around, the Yellowstone caldera (Wyoming, United States). We show that the He and Ne isotopic and elemental signatures of the Yellowstone gas requires an input from an undegassed mantle plume. Coupled with the distinct ratio of 129Xe to primordial Xe isotopes in Yellowstone compared with mid-ocean ridge basalt (MORB) samples, this confirms that the deep plume and shallow MORB mantles have remained distinct from one another for the majority of Earth’s history. Krypton and xenon isotopes in the Yellowstone mantle plume are found to be chondritic in origin, similar to the MORB source mantle. This is in contrast with the origin of neon in the mantle, which exhibits an isotopic dichotomy between solar plume and chondritic MORB mantle sources. The co-occurrence of solar and chondritic noble gases in the deep mantle is thought to reflect the heterogeneous nature of Earth’s volatile accretion during the lifetime of the protosolar nebula. It notably implies that the Earth was able to retain its chondritic volatiles since its earliest stages of accretion, and not only through late additions.

Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument

1E.B.Rampe et al. (>10)
Journal of Geophysical Research (Planets) (in Press) Link to Article [https://doi.org/10.1029/2019JE006306]
1NASA Johnson Space Center, Houston, TX, USA
Published by arrangement with John Wiley & Son

Vera Rubin ridge (VRR) is an erosion‐resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short‐wave infrared measurements indicate it contains red‐colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X‐ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray‐colored outcrop suggested localized regions with coarse‐grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano‐crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well‐crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid‐saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid‐altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.

Hydrothermal Precipitation of Sanidine (Adularia) Having Full Al,Si Structural Disorder and Specular Hematite at Maunakea Volcano (Hawai’i) and at Gale Crater (Mars)

1R.V.Morris et al. (>10)
Journal of Geophysical Research (Planets) (in Press) Link to Article [https://doi.org/10.1029/2019JE006324]
1NASA Johnson Space Center, Houston, TX, USA
Published by arrangement with John Wiley & Sons

Hydrothermal high sanidine and specular hematite are found within ferric‐rich and grey‐colored cemented basaltic breccia occurring within horizontal, weathering‐resistant strata exposed in an erosional gully of the Pu’u Poliahu cinder cone in the summit region of Maunakea volcano (Hawai’i). The cone was extensively altered by hydrothermal, acid‐sulfate fluids at temperatures up to ~400 °C, and, within strata, plagioclase was removed by dissolution from progenitor Hawaiitic basalt, and sanidine and hematite precipitated. Fe2O3T concentration and Fe3+/∑Fe redox state are ~12 wt. % and ~0.4 for progenitor basalt and 46‐60 wt. % and ~1.0 for cemented breccias, respectively, implying open‐system alteration and oxic precipitation. Hydrothermal high sanidine (adularia) is characterized by full Al,Si structural disorder with monoclinic unit‐cell (Rietveld refinement): a = 8.563(19) Å, b = 13.040(6) Å, c = 7.169(4) Å, β = 116.02(10)° and V = 719.4(19) Å3. Hematite (structure confirmed by Rietveld refinement) is the predominant Fe‐bearing phase detected. Coarse size fractions of powdered hematite‐rich breccia (500–1000 μm) are dark and spectrally neutral at visible wavelengths, confirming specular hematite, and SEM images show platy to polyhedral hematite morphologies with longest dimensions >10 μm. Smectite and a 10‐Å phyllosilicate, both chemically dominated by Mg as octahedral cation, are additional diagenetic hydrothermal alteration products. By analogy and as a working hypothesis, high sanidine (Kimberly formation) and specular hematite (Mt. Sharp group at Hartmann’s Valley and Vera Rubin ridge) at Gale crater are interpreted as diagenetic alteration products of martian basaltic material by hydrothermal processes.

Boron and Lithium in Calcium Sulfate Veins: Tracking Precipitation of Diagenetic Materials in Vera Rubin Ridge, Gale Crater

1D.Das et al. (>10)
Journal of Geophysical Research (Planets) (in Press) Link to Article [https://doi.org/10.1029/2019JE006301]
1Department of Earth and Planetary Sciences, McGill University, Quebec, Canada
Published by arrangement with John Wiley & Sons

The NASA Curiosity rover’s ChemCam instrument suite has detected boron in calcium‐sulfate‐filled fractures throughout the sedimentary strata of Gale crater including Vera Rubin ridge (VRR). The presence of elevated B concentration provides insights into Martian subsurface aqueous processes. In this study we extend the dataset of B in Ca‐sulfate veins across Gale crater, comparing the detection frequency and relative abundances with Li. We report 33 new detections of B within veins analyzed between sols 1548 and 2311 where detections increase in Pettegrove Point and Jura members, which form VRR. The presence of B and Li in the Ca‐sulfate veins is possibly due to dissolution of pre‐existing B in clays of the bedrock by acids or neutral water and redistribution of the elements into the veins. Elevated frequency of B detection in veins of Gale crater correlate with presence of dehydration features such as desiccation cracks, altered clay minerals and detections of evaporites such as Mg‐sulfates, chloride salts in the host rocks. The increased observations of B also coincide with decreased Li concentration in the veins (average Li concentration of veins drops by ~15 ppm). Boron and Li have varying solubilities and Li does not form salts as readily upon dehydration as B, causing it to remain in the solution. So, the weak negative correlation between B and Li may reflect the crystallization sequence during dehydration on Vera Rubin ridge.

Caleta el Cobre 022 Martian meteorite: Increasing nakhlite diversity

1L.Krämer-Rugiu (>10)
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13534]
1Aix Marseille University, CNRS, Coll France, IRD, INRAE, CEREGE, Aix‐en‐Provence, France
Published by arrangement with John Wiley & Sons

Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.

Model for asteroid regolith to guide simulant development

1Philip T.Metzger,2Daniel T.Britt
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2020.113904]
1Florida Space Institute, University of Central Florida, Orlando, Florida, USA
2Department of Physics, University of Central Florida, Orlando, Florida, USA
Copyright Elsevier

When creating asteroid regolith simulant, it is necessary to have a model of asteroid regolith to guide and to evaluate the simulant. We created a model through evaluation and synthesis of the available data sets including (1) the returned sample from Itokawa by the Hayabusa spacecraft, (2) imagery from the Hayabusa and NEAR spacecraft visiting Itokawa and Eros, respectively, (3) thermal infrared observations from asteroids, (4) the texture of meteorite regolith breccias, and (5) observations and modeling of the ejecta clouds from disrupted asteroids. Comparison of the Hayabusa returned sample with other data sets suggest the surficial material in the smooth regions of asteroids is dissimilar to the bulk regolith, probably due to removal of fines by photoionization and solar wind interaction or by preferential migration of mid-sized particles into the smooth terrain. We found deep challenges interpreting and applying the thermal infrared data so we were unable to use those observations in the model. Texture of regolith breccias do not agree with other data sets, suggesting the source regolith on Vesta was coarser than typical asteroid regolith. The observations of disrupted asteroids present a coherent picture of asteroid bulk regolith in collisional equilibrium, unlike lunar regolith, HED textures, and the Itokawa returned sample. The model we adopt consists of power laws for the bulk regolith in unspecified terrain (differential power index −3.5, representing equilibrium), and the surficial regolith in smooth terrain (differential power index −2.5, representing disequilibrium). Available data do not provide adequate constraints on maximum and minimum particle sizes for these power laws, so the model treats them as user-selectable parameters for the simulant.