Early Impact Events on Chondritic Parent Bodies: Insights From NWA 11004, Reclassified as an LL7 Breccia

1,2,3Y. Li,3,4A. E. Rubin,1W. Hsu,4K. Ziegler
Journal of Geophysical Research (Planets) Link to Article [https://doi.org/10.1029/2019JE006360]
1Center for Excellence in Comparative Planetology, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China
2Macau University of Science and Technology, Macau, China
3Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
4Maine Mineral and Gem Museum, Bethel, ME, USA
5Institute of Meteoritics, University of New Mexico, Albuquerque, NM, USA
Published by arrangement with John Wiley & Sons

The NWA 11004 ordinary chondrite (OC) can provide insights into the complex petrogenetic processes of the early solar system. Although originally classified as an L7 chondrite, it is reclassified as LL based on kamacite Ni (4.9 ± 0.3 wt.%) and Co (3.6 ± 0.5 wt.%) and bulk O‐isotopic composition (δ17O = 3.76‰; δ18O = 5.39‰). NWA 11004 is characterized by (1) the occurrence of 3‐ to 5‐mm‐sized poikilitic pyroxene, (2) scattered low‐Ca pyroxene data in a TiO2 versus Al2O3 diagram, (3) relatively magnesian olivine and low‐Ca pyroxene (Fa25.4, Fs21.3), (4) low abundances of high‐Ca pyroxene, plagioclase, troilite and Ca‐phosphate, and (5) low rare earth element contents in low‐Ca pyroxene. The geochemical features of olivine and low‐Ca pyroxene in NWA 11004 differ from literature data for grains that crystallized from a melt in an OC impact melt breccia. We suggest that in NWA 11004, a plagioclase‐phosphate high‐Ca pyroxene‐troilite melt migrated away during partial melting. Some high‐Ca pyroxene grains crystallized from the residual melt, as indicated by a positive linear trend in a TiO2 versus Al2O3 diagram. Whereas poikilitic low‐Ca pyroxene in NWA 11004 exhibits undulose‐to‐weak mosaic extinction, the olivine chadacrysts exhibit sharp optical extinction; this implies that NWA 11004 experienced a late‐stage shock event (S4) followed by annealing. The Ca‐phosphate 207Pb/206Pb age of 4546 ± 34 Ma most likely dates this late‐stage shock event. We suggest that the presence of type 7 OC in the early solar system may be attributable to impacts on warm chondritic asteroids that were initially heated by the decay of 26Al.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s