The timing of lunar solidification and mantle overturn recorded in ferroan anorthosite 62237

1C.K.Sio,1L.E.Borg,1W.S.Cassata
Earth and Planetary Science Letters 538, 116219 Link to Article [https://doi.org/10.1016/j.epsl.2020.116219]
1Lawrence Livermore National Laboratory, 7000 East Ave. L-231, Livermore, CA 94550, USA
Copyright Elsevier

Ferroan anorthosite suite (FAS) rocks are widely interpreted to represent primordial lunar crust. Despite their importance in pinpointing the timing of lunar crust formation, robust chronological investigations for this rock type are scarce. Here, we report the Ar-Ar, Rb-Sr, and Sm-Nd isotopic systematics for the FAS troctolitic anorthosite 62237. The Ar-Ar isotopic system has been reset by a thermal event at 3710 ± 48 Ma, and the Rb-Sr isotopic systematics has been disturbed such that a Rb-Sr isochron age cannot be determined. However, an internal isochron for the Sm-Nd isotopic system has yielded an age of 4350 ± 73 Ma (MSWD = 2.0) with an initial NdCHUR of −0.53 ± 0.26. The mineral and whole-rock fractions of 62237 plot on the same internal isochron as FAS sample 60025. The combined datasets define an age of 4372 ± 35 Ma (MSWD = 4.0) with an initial NdCHUR of −0.17 ± 0.22. Literature Sm-Nd data for FAS and Mg-suite whole-rocks also plot on the 60025-62237 isochron. The coherence of data from both FAS and Mg-suite rocks examined thus far suggests that both rock suites formed contemporaneously from identical, or nearly identical, sources. In addition, the concordance of FAS and Mg-suite ages suggests that primordial crust solidification either involved both magmatic suites, or that Mg-suite magmatism was contemporaneous with FAS magmatism within resolution of the Sm-Nd chronometer. The ages for FAS and Mg-suite also coincide with the formation ages of the mare basalt source regions and urKREEP. Ferroan anorthosite suite rocks and urKREEP are thought to represent primordial LMO solidification products, whereas Mg-suite and the mare basalt source regions are argued to represent mixtures of various LMO crystallization products that were formed during density-driven overturn of the LMO. The concordance of ages implies that the 4372 ± 35 Ma Sm-Nd isochron records the age of mantle overturn, and that overturn occurred during, or shortly after, solidification of the LMO.

Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk

1A.Morbidelli,1G.Libourel,2H.Palme,3 S.A.Jacobson,4D.C.Rubie
Earth and Planetary Science Letters 538, 116220 Link to Article [https://doi.org/10.1016/j.epsl.2020.116220]
1Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, 06304 Nice Cedex 4, France
2Senckenberg, world of biodiversity, Sektion Meteoritenforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
3Northwestern University, Dept. of Earth and Planetary Sciences, Evanston, 60208 IL, United States of America
4Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
Copyright Elsevier

The Al/Si and Mg/Si ratios in non-carbonaceous chondrites are lower than the solar (i.e., CI-chondritic) values, in sharp contrast to the non-CI carbonaceous meteorites and the Earth, which are enriched in refractory elements and have Mg/Si ratios that are solar or larger. We show that the formation of a first generation of planetesimals during the condensation of refractory elements implies the subsequent formation of residual condensates with strongly sub-solar Al/Si and Mg/Si ratios. The mixing of residual condensates with different amounts of material with solar refractory/Si element ratios explains the Al/Si and Mg/Si values of non-carbonaceous chondrites. To match quantitatively the observed ratios, we find that the first-planetesimals should have accreted when the disk temperature was ∼1,330–1,400 K depending on pressure and assuming a solar C/O ratio of the disk. We discuss how this model relates to our current understanding of disk evolution, grain dynamics, and planetesimal formation. We also extend the discussion to moderately volatile elements (e.g., Na), explaining how it may be possible that the depletion of these elements in non-carbonaceous chondrites is correlated with the depletion of refractory elements (e.g., Al). Extending the analysis to Cr, we find evidence for a higher than solar C/O ratio in the protosolar disk’s gas when/where condensation from a fractionated gas occurred. Finally, we discuss the possibility that the supra-solar Al/Si and Mg/Si ratios of the Earth are due to the accretion of ∼40% of the mass of our planet from the first-generation of refractory-rich planetesimals.