Machiite, Al2Ti3O9, a new oxide mineral from the Murchison carbonaceous chondrite: A new ultra-refractory phase from the solar nebula

1Alexander N. Krot,1Kazuhide Nagashima,2George R. Rossman
American Mineralogist 105, 239–243 Link to Article []
1Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i 96822, U.S.A.
Division of Geological and Planetary Sciences, California Institute of
2Technology, Pasadena, California 91125, U.S.A.
Copyright: The Mineralogical Society of America

Machiite (IMA 2016-067), Al2Ti3O9, is a new mineral that occurs as a single euhedral crystal, 4.4 μm in size, in contact with an euhedral corundum grain, 12 μm in size, in a matrix of the Murchison CM2 carbonaceous chondrite. The mean chemical composition of holotype machiite by electron probe microanalysis is (wt%) TiO2 59.75, Al2O3 15.97, Sc2O3 10.29, ZrO2 9.18, Y2O3 2.86, FeO 1.09, CaO 0.44, SiO2 0.20, MgO 0.10, total 99.87, giving rise to an empirical formula (based on 9 oxygen atoms pfu) of (Al1.17Sc0.56Y0.10Ti4+0.08Ti0.084+Fe0.06Ca0.03Mg0.01)(Ti4+2.71Ti2.714+Zr0.28Si0.01)O9. The general formula is (Al,Sc)2(Ti4+,Zr)3O9. The end-member formula is Al2Ti3O9. Machiite has the C2/c schreyerite-type structure with a = 17.10 Å, b = 5.03 Å, c = 7.06 Å, β = 107°, V = 581 Å3, and Z = 4, as revealed by electron backscatter diffraction. The calculated density using the measured composition is 4.27 g/cm3. The machiite crystal is highly 16O-depleted relative to the coexisting corundum grain (Δ17O = –0.2 ± 2.4‰ and –24.1 ± 2.6‰, respectively; where Δ17O = δ17O – 0.52 × δ18O). Machiite is a new member of the schreyerite (V2Ti3O9) group and a new Sc,Zr-rich ultrarefractory phase formed in the solar nebula, either by gas-solid condensation or as a result of crystallization from a Ca,Al-rich melt having solar-like oxygen isotopic composition (Δ17O~ –25‰) under high-temperature (~1400–1500 °C) and low-pressure (~10-4–10-5 bar) conditions in the CAI-forming region near the protosun. The currently observed disequilibrium oxygen isotopic composition between machiite and corundum may indicate that machiite subsequently experienced oxygen isotopic exchange with a planetary-like 16O-poor gaseous reservoir either in the solar nebula or on the CM chondrite parent body. The name machiite is in honor of Chi Ma, mineralogist at California Institute of Technology, for his contributions to meteorite mineralogy and discovery of many new minerals representing extreme conditions of formation.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s