The composition of Mars

1Takashi Yoshizaki,1,2,3William F.McDonough
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.01.011]
1Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
2Department of Geology, University of Maryland, College Park, MD 20742, USA
3Research Center of Neutrino Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
Copyright Elsevier

Comparing compositional models of the terrestrial planets provides insights into physicochemical processes that produced planet-scale similarities and differences. The widely accepted compositional model for Mars assumes Mn and more refractory elements are in CI chondrite proportions in the planet, including Fe, Mg, and Si, which along with O make up >90% of the mass of Mars. However, recent improvements in our understandings on the composition of the solar photosphere and meteorites challenge the use of CI chondrite as an analog of Mars. Here we present an alternative model composition for Mars that avoids such an assumption and is based on data from Martian meteorites and spacecraft observations. Our modeling method was previously applied to predict the Earth’s composition. The model establishes the absolute abundances of refractory lithophile elements in the bulk silicate Mars (BSM) at 2.26 times higher than that in CI carbonaceous chondrites. Relative to this chondritic composition, Mars has a systematic depletion in moderately volatile lithophile elements as a function of their condensation temperatures. Given this finding, we constrain the abundances of siderophile and chalcophile elements in the bulk Mars and its core. The Martian volatility trend is consistent with 7 wt% S in its core, which is significantly lower than that assumed in most core models (i.e., >10 wt% S). Furthermore, the occurrence of ringwoodite at the Martian core-mantle boundary might have contributed to the partitioning of O and H into the Martian core.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s