Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity

1,2E.B.Rampe et al. (>10)
Geochemistry (in Press) Link to Article [https://doi.org/10.1016/j.chemer.2020.125605]
1NASA Johnson Space Center, Houston, TX, USA
2Chesapeake Energy, Oklahoma City, OK, USA
Copyright Elsevier

The Mars Science Laboratory Curiosity rover arrived at Mars in August 2012 with a primary goal of characterizing the habitability of ancient and modern environments. Curiosity was sent to Gale crater to study a sequence of ∼3.5 Ga old sedimentary rocks that, based on orbital visible and near- to short-wave infrared reflectance spectra, contain secondary minerals that suggest deposition and/or alteration in liquid water. The sedimentary sequence in the lower slopes of Mount Sharp in Gale crater preserves a dramatic shift on early Mars from a relatively warm and wet climate to a cold and dry climate, based on a transition from smectite-bearing strata to sulfate-bearing strata. The rover is equipped with instruments to examine the sedimentology and identify compositional changes in the stratigraphy. The Chemistry and Mineralogy (CheMin) instrument is one of two internal laboratories on Curiosity and includes a transmission X-ray diffractometer (XRD) and X-ray fluorescence (XRF) spectrometer. CheMin measures loose sediment samples scooped from the surface and drilled rock powders, and the XRD provides quantitative mineralogy to a detection limit of ∼1 wt.% for crystalline phases. Curiosity has traversed >20 km since landing and has primarily been exploring an ancient lake environment fed by streams and groundwater. Of the 19 drilled rock samples analyzed by CheMin as of sol 2300 (January 2019), 15 are from fluvio-lacustrine deposits that comprise the Bradbury and Murray formations. Most of these samples were drilled from units that did not have a clear mineralogical signature from orbit. Results from CheMin demonstrate an astounding diversity in the mineralogy of these rocks that signifies geochemical variations in source rocks, transportation mechanisms, and depositional and diagenetic fluids. Most detrital igneous minerals are basaltic, but the discovery in a few samples of abundant silicate minerals that usually crystallize from evolved magmas on Earth remains enigmatic. Trioctahedral smectite and magnetite at the base of the section may have formed from low-salinity pore waters with a circumneutral pH in lake sediments. A transition to dioctahedral smectite, hematite, and Ca-sulfate going up section suggests a change to more saline and oxidative aqueous conditions in the lake waters themselves and/or in diagenetic fluids. Perhaps one of the biggest mysteries revealed by CheMin is the high abundance of X-ray amorphous materials (15 to 73 wt.%) in all samples drilled or scooped to date. CheMin has analyzed three modern eolian sands, which have helped constrain sediment transport and mineral segregation across the active Bagnold Dune Field. Ancient eolian sandstones drilled from the Stimson formation differ from modern eolian sands in that they contain abundant magnetite but no olivine, suggesting that diagenetic processes led to the alteration of olivine to release Fe(II) and precipitate magnetite. Fracture-associated halos in the Stimson and the Murray formations are evidence for complex aqueous processes long after the streams and lakes vanished from Gale crater. The sedimentology and composition of the rocks analyzed by Curiosity demonstrate that habitable environments persisted intermittently on the surface or in the subsurface of Gale crater for perhaps more than a billion years.

The composition of Mars

1Takashi Yoshizaki,1,2,3William F.McDonough
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.01.011]
1Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
2Department of Geology, University of Maryland, College Park, MD 20742, USA
3Research Center of Neutrino Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
Copyright Elsevier

Comparing compositional models of the terrestrial planets provides insights into physicochemical processes that produced planet-scale similarities and differences. The widely accepted compositional model for Mars assumes Mn and more refractory elements are in CI chondrite proportions in the planet, including Fe, Mg, and Si, which along with O make up >90% of the mass of Mars. However, recent improvements in our understandings on the composition of the solar photosphere and meteorites challenge the use of CI chondrite as an analog of Mars. Here we present an alternative model composition for Mars that avoids such an assumption and is based on data from Martian meteorites and spacecraft observations. Our modeling method was previously applied to predict the Earth’s composition. The model establishes the absolute abundances of refractory lithophile elements in the bulk silicate Mars (BSM) at 2.26 times higher than that in CI carbonaceous chondrites. Relative to this chondritic composition, Mars has a systematic depletion in moderately volatile lithophile elements as a function of their condensation temperatures. Given this finding, we constrain the abundances of siderophile and chalcophile elements in the bulk Mars and its core. The Martian volatility trend is consistent with 7 wt% S in its core, which is significantly lower than that assumed in most core models (i.e., >10 wt% S). Furthermore, the occurrence of ringwoodite at the Martian core-mantle boundary might have contributed to the partitioning of O and H into the Martian core.

40Ar/39Ar systematics of melt lithologies and target rocks from the Gow Lake impact structure, Canada

1,2A.E.Pickersgill,2,3D.F.Mark,1M.R.Lee,4,5G.R.Osinski
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2020.01.025]
1School of Geographical & Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK
2NERC Argon Isotope Facility, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride G75 0QF, UK
3Department of Earth & Environmental Science, University of St Andrews, St Andrews, KY16 9AJ, UK
4Institute for Earth and Space Exploration, University of Western Ontario, 1151 Richmond Street, London, ON, Canada
5Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street, London, ON, Canada
Copyright Elsevier

The age of the Gow Lake impact structure (Saskatchewan, Canada) is poorly constrained, with previous estimates ranging from 100 to 250 Ma. Using a combination of step-heating and UV laser in situ 40Ar/39Ar analyses we have sought to understand the 40Ar/39Ar systematics of this small impact crater and obtain a more precise and accurate age. This structure is challenging for 40Ar/39Ar geochronology due to its small size (∼5 km diameter), the silicic composition of the target rock, and the large difference in age between the impact event and the target rock (∼1.2 Ga). These factors can serve to inhibit argon mobility in impact melts, leading to retention of ‘extraneous’ 40Ar and anomalously older measured ages. We mitigated the undesirable effects of extraneous 40Ar retention by analysing small volume aliquots of impact glass using step-heating and even smaller volumes via the UV laser in situ 40Ar/39Ar technique. Although primary hydration of impact-generated glasses enhanced the diffusivity of 40Ar inherited from silica-rich melts, data still had to be corrected for extraneous 40Ar by using isotope correlation plots to define the initial trapped 40Ar/36Ar components. Our inverse isochron age of 196.8 ± 9.6/9.9 Ma (2σ, analytical/external precision) demonstrates that the Gow Lake event occurred within uncertainty of the Triassic-Jurassic boundary, but there is no evidence that it was part of an impact cluster.