1Ioannis Kouvatsis,2Beda A. Hofmann
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13410]
1Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, 3012 Bern, Switzerland
2Natural History Museum Bern, Bernastrasse 15, 3005 Bern, Switzerland
Published by arrangement with John Wiley & Sons
Hot and cold deserts have been thoroughly searched for meteorites in the past decades, which has led to a large inventory of classified meteorites. H‐ and L‐chondrites are the most abundant meteorites in all collections, and many authors used the H/L ratio as a characteristic parameter in comparing meteorite populations. H/L ratios (after pairing) vary from 0.90 in observed falls up to 1.74 in El Médano (Atacama Desert). In this study, we investigate the H/L ratio of 965 unpaired H‐ and L‐chondrites collected in Oman and compare this population with observed falls and other hot desert collections. We find a mass dependence of the H/L ratio among hot desert finds and identify mechanisms such as fragmentation during weathering and fall that have an impact on the H/L ratio. We employ the Kolmogorov–Smirnov and Mann–Whitney U statistical tests to compare the mass distributions of H‐ and L‐chondrites and to test the relationship between the similarity of mass distributions and the H/L ratio. We conclude that the variations of the H/L ratios observed in various populations are a sampling artifact resulting from secondary effects and observational bias, expressed in differences of the H and L mass distributions which are not observed in falls, and not due to variations in H/L of the meteorite flux. The H/L ratio of 0.90 observed among recent falls is considered as most representative for the overall meteorite flux, at least since the Late Pleistocene.