Origin of lunar fragmental matrix breccias—Highly siderophile element constraints

1Philipp Gleißner,1Harry Becker
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13363]
1Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74‐100, 12249 Berlin, Germany
Published by arrangement with John Wiley & Sons

Ejecta at North Ray crater (Apollo 16) sampled a unique section of the lunar highlands not accessible at most other landing sites and provide important constraints on the composition of late accreted materials. New data on multiple aliquots of four fragmental matrix breccias and a fragment‐laden melt breccia from this site display a variety of highly siderophile element patterns which may represent the signatures of volatile element‐depleted carbonaceous chondrite‐like material, primitive achondrite, differentiated metal, and an impactor component that cannot be related to known meteoritic material. The latter component is prevalent in these rocks besides characterized by depletions in Re and Os compared to Ir, Ru and Pt, chondritic Re/Os, and a gradual depletion of Pd and Au. The observed characteristics are more consistent with fractionations by nebular processes, like incomplete condensation or evaporation, than with lunar crustal processes, like partial melting or volatilization. The impactor signature preserved in these breccias may stem from primitive meteorites with a refractory element composition moderately different from known chondrites. The presence of distinct impactor components within the North Ray crater breccias together with observed correlations of characteristic element ratios (e.g., Re/Os, Ru/Pt, Pd/Ir) in different impact lithologies of four Apollo landing sites constrains physical mixing processes ranging from the scale of gram‐sized samples to the area covered by the Apollo missions.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s