Small iron meteoroids Observation and modeling of meteor light curves

1David Čapek,1Pavel Koten,1Jiří Borovička,1Vlastimil Vojáček,1Pavel Spurný,1Rostislav Štork
Astronomy & Astrophysics 625, A106 Link to Article []
1Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov, Czech Republic
Reproduced with permission (C) ESO

Context. A significant fraction of small meteors are produced by iron meteoroids. Their origin and the interaction with the atmosphere have not been well explained up to now.

Aims. The goals of the study are to observe faint, slow, low altitude meteors, to identify candidates for iron meteoroids among them, to model their ablation and light curves, and to determine their properties.

Methods. Double station video observations were used for the determination of atmospheric trajectories, heliocentric orbits, light curves, and spectra of meteors. Meteors with iron spectra or of suspected iron composition based on beginning heights and light curves were modeled. The immediate removal of liquid iron from the surface as a cloud of droplets with Nukiyama–Tanasawa size distribution and their subsequent vaporization was assumed as the main ablation process on the basis of our previous work. The numerical model has only five parameters: meteoroid initial velocity v, zenith distance z, initial mass m, mean drop size Ddr, and luminous efficiency τ. The theoretical light curves were compared with the observed ones.

Results. The model is able to explain the majority of the selected light curves, and meteoroid parameters that are not directly observable – mDdr, and τ – are determined. Unlike in most meteor studies, the mass and luminous efficiency are determined independently. Luminous efficiency ranges from 0.08 to 5.8%; it weakly decreases with increasing initial meteoroid mass. No simple dependency on initial velocity was found. The mean size of iron drops depends on the meteoroid velocity. Slower meteoroids can produce drops with a wide range of mean sizes, whereas faster ones are better matched with larger drops with a smaller dispersion of sizes.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s