Shock physics mesoscale modeling of shock stage 5 and 6 in ordinary and enstatite chondrites

1Juulia-Gabrielle Moreau,1,2Tomas Kohout,3Kai Wünnemann,4Patricie Halodova,5,6Jakub Haloda
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2019.06.004]
1Department of Geosciences and Geography, University of Helsinki, Finland
2Institute of Geology, The Czech Academy of Sciences, Prague, Czech Republic
3Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
4Centrum výzkumu Řež, Husinec-Řež, Czech Republic
5Czech Geological Survey, Prague, Czech Republic
6Oxford Instruments NanoAnalysis, Bucks, United Kingdom
Copyright Elsevier

Shock-darkening, the melting of metals and iron sulfides into a network of veins within silicate grains, altering reflectance spectra of meteorites, was previously studied using shock physics mesoscale modeling. Melting of iron sulfides embedded in olivine was observed at pressures of 40–50 GPa. This pressure range is at the transition between shock stage 5 (CS5) and 6 (CS6) of the shock metamorphism classification in ordinary and enstatite chondrites. To characterize CS5 and CS6 better with a mesoscale modeling approach and assess post-shock heating and melting, we used multi-phase (i.e. olivine/enstatite, troilite, iron, pores, and plagioclase) meshes with realistic configurations of grains. We carried out a systematic study of shock compression in ordinary and enstatite chondrites at pressures between 30 and 70 GPa. To setup mesoscale sample meshes with realistic silicate, metal, iron sulfide, and open pore shapes, we converted backscattered electron microscope images of three chondrites. The resolved macroporosity in meshes was 3–6%. Transition from shock CS5 to CS6 was observed through (1) the melting of troilite above 40 GPa with melt fractions of ~0.7–0.9 at 70 GPa, (2) the melting of olivine and iron above 50 GPa with melt fraction of ~0.001 and 0.012, respectively, at 70 GPa, and (3) the melting of plagioclase above 30 GPa (melt fraction of 1, at 55 GPa). Post-shock temperatures varied from ~540 K at 30 GPa to ~1300 K at 70 GPa. We also constructed models with increased porosity up to 15% porosity, producing higher post-shock temperatures (~800 K increase) and melt fractions (~0.12 increase) in olivine. Additionally we constructed a pre-heated model to observe post-shock heating and melting during thermal metamorphism. This model presented similar results (melting) at pressures 10–15 GPa lower compared to the room temperature models. Finally, we demonstrated dependence of post-shock heating and melting on the orientation of open cracks relative to the shock wave front. In conclusion, the modeled melting and post-shock heating of individual phases were mostly consistent with the current shock classification scheme (Stöffler et al. 2018, 2019).

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s