The Primordial Solar Wind as a Sculptor of Terrestrial Planet Formation

Christopher Spalding
Astrophysical Journal Letters 869, L17 Link to Article [DOI: 10.3847/2041-8213/aaf478]
Department of Astronomy, Yale University, New Haven, CT 06511, USA

Our solar system is almost entirely devoid of material interior to Mercury’s orbit, in sharp contrast to the multiple Earth masses of material commonly residing within the analogous region of extrasolar planetary systems. Recent work has suggested that Jupiter’s orbital migration early in the solar system’s history fragmented primordial planetary material within the inner solar system. However, the reason for the absence of subsequent planet formation within 0.4 au remains unsolved. Here, we show that leftover debris interior to Mercury’s current orbit was susceptible to outward migration driven by the early Solar wind, enhanced by the Sun’s primordial rapid rotation and strong magnetic field. The ram pressure arising from azimuthal motion of the Solar wind plasma transported ~100 m-sized objects and smaller from 0.1 au out to the terrestrial planet-forming zone within the suspected ~30–50 Myr timespan of the Earth’s formation. The mass of material within this size class typically exceeds Mercury, and can rival that of Earth. Consequently, the present-day region of terrestrial planets and the asteroid belt has been supplied by a large mass of material from the innermost, hot solar system, providing a potential explanation for the evidence of high-temperature alteration within some asteroids and the high iron content of Mercury.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s