Excitation of Planetary Obliquities through Planet–Disk Interactions

Sarah Millholland1,3 and Konstantin Batygin2
Astrophysical Journal 876, 119 Link to Article [DOI: 10.3847/1538-4357/ab19be]
1Department of Astronomy, Yale University, New Haven, CT 06511, USA
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
3NSF Graduate Research Fellow.

The tilt of a planet’s spin axis off its orbital axis (“obliquity”) is a basic physical characteristic that plays a central role in determining the planet’s global circulation and energy redistribution. Moreover, recent studies have also highlighted the importance of obliquities in sculpting not only the physical features of exoplanets but also their orbital architectures. It is therefore of key importance to identify and characterize the dominant processes of excitation of nonzero axial tilts. Here we highlight a simple mechanism that operates early on and is likely fundamental for many extrasolar planets and perhaps even solar system planets. While planets are still forming in the protoplanetary disk, the gravitational potential of the disk induces nodal recession of the orbits. The frequency of this recession decreases as the disk dissipates, and when it crosses the frequency of a planet’s spin axis precession, large planetary obliquities may be excited through capture into a secular spin–orbit resonance. We study the conditions for encountering this resonance and calculate the resulting obliquity excitation over a wide range of parameter space. Planets with semimajor axes in the range 0.3 au lesssim a lesssim 2 au are the most readily affected, but large-a planets can also be impacted. We present a case study of Uranus and Neptune, and show that this mechanism likely cannot help explain their high obliquities. While it could have played a role if finely tuned and envisioned to operate in isolation, large-scale obliquity excitation was likely inhibited by gravitational planet–planet perturbations.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s