Evidence for a Circumsolar Dust Ring Near Mercury’s Orbit

Guillermo Stenborg, Johnathan R. Stauffer1, and Russell A. Howard
Astrophysical Journal 868, 34 Link to Article [DOI: 10.3847/1538-4357/aae6cb]
Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
1Current address: Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA.

To test a technique to be used on the white-light imager onboard the recently launched Parker Solar Probemission, we performed a numerical differentiation of the brightness profiles along the photometric axis of the F-corona models that are derived from STEREO Ahead Sun Earth Connection Heliospheric Investigation observations recorded with the HI-1 instrument between 2007 December and 2014 March. We found a consistent pattern in the derivatives that can be observed from any S/C longitude between about 18° and 23° elongation with a maximum at about 21°. These findings indicate the presence of a circumsolar dust density enhancement that peaks at about 23° elongation. A straightforward integration of the excess signal in the derivative space indicates that the brightness increase over the background F-corona is on the order of 1.5%–2.5%, which implies an excess dust density of about 3%–5% at the center of the ring. This study has also revealed (1) a large-scale azimuthal modulation of the inner boundary of the pattern, which is in clear association with Mercury’s orbit; and (2) a localized modulation of the inner boundary that is attributable to the dust trail of Comet 2P/Encke, which occurs near ecliptic longitudes corresponding to the crossing of Encke’s and Mercury’s orbital paths. Moreover, evidence of dust near the S/C in two restricted ranges of ecliptic longitudes has also been revealed by this technique, which is attributable to the dust trails of (1) comet 73P/Schwassmann–Wachmann 3, and (2) 169P/NEAT.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s