Reaction of Q to thermal metamorphism in parent bodies: Experimental simulation

1. B. Verchovsky, 2S. A. Hunt, 3W. Montgomery, 3M. A. Sephton
Meteoritics & Planetary Science (in Press) Link to Article []
1School of Physical Sciences, The Open University, , Walton Hall, Milton Keynes, MK7 6AA, UK
2Department of Earth Sciences, University College London, , London, WC1E 6BT, UK
3 Geochemistry Laboratory, Imperial College London, , London, SW7 2AZ, UK
Published by arrangement with John Wiley & Sons

Planetary noble gases in chondrites are concentrated in an unidentified carrier phase, called “Q.” Phase Q oxidized at relatively low temperature in pure oxygen is a very minor part of insoluble organic matter (IOM), but has not been separated in a pure form. High‐pressure (HP) experiments have been used to test the effects of thermal metamorphism on IOM from the Orgueil (CI1) meteorite, at conditions up to 10 GPa and 700 °C. The effect of the treatment on carbon structural order was characterized by Raman spectroscopy of the carbon D and G bands. The Raman results show that the IOM becomes progressively more graphite‐like with increasing intensity and duration of the HP treatment. The carbon structural transformations are accompanied by an increase in the release temperatures for IOM carbon and 36Ar during stepped combustion (the former to a greater extent than the latter for the most HP treated sample) when compared with the original untreated Orgueil (CI1) sample. The 36Ar/C ratio also appears to vary in response to HP treatment. Since 36Ar is a part of Q, its release temperature corresponds to that for Q oxidation. Thus, the structural transformations of Q and IOM upon HP treatment are not equal. These results correspond to observations of thermal metamorphism in the meteorite parent bodies, in particular those of type 4 enstatite chondrites, e.g., Indarch (EH4), where graphitized IOM oxidized at significantly higher temperatures than Q (Verchovsky et al. 2002). Our findings imply that Q is less graphitized than most of the macromolecular carbonaceous material present during parent body metamorphism and is thus a carbonaceous phase distinct from other meteoritic IOM.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s