The alteration history of the Jbilet Winselwan CM carbonaceous chondrite: An analog for C‐type asteroid sample return

1A. J. King, 1S. S. Russell, 1P. F. Schofield, 2E. R. Humphreys‐Williams, 2S. Strekopytov, 3F. A. J. Abernethy, 3A.B. Verchovsky, 3M. M. Grady
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13224]
1Planetary Materials Group, Department of Earth Sciences, Natural History Museum, , London, SW7 5BD UK
2Imaging and Analysis Centre, Natural History Museum, , London, SW7 5BD UK
3Department of Physical Sciences, The Open University, , Walton Hall, Milton Keynes, MK7 6AA UK
Published by arrangement with John Wiley & Sons

Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (<1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. (2007) scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions.

Reaction of Q to thermal metamorphism in parent bodies: Experimental simulation

1. B. Verchovsky, 2S. A. Hunt, 3W. Montgomery, 3M. A. Sephton
Meteoritics & Planetary Science (in Press) Link to Article [https://doi.org/10.1111/maps.13231]
1School of Physical Sciences, The Open University, , Walton Hall, Milton Keynes, MK7 6AA, UK
2Department of Earth Sciences, University College London, , London, WC1E 6BT, UK
3 Geochemistry Laboratory, Imperial College London, , London, SW7 2AZ, UK
Published by arrangement with John Wiley & Sons

Planetary noble gases in chondrites are concentrated in an unidentified carrier phase, called “Q.” Phase Q oxidized at relatively low temperature in pure oxygen is a very minor part of insoluble organic matter (IOM), but has not been separated in a pure form. High‐pressure (HP) experiments have been used to test the effects of thermal metamorphism on IOM from the Orgueil (CI1) meteorite, at conditions up to 10 GPa and 700 °C. The effect of the treatment on carbon structural order was characterized by Raman spectroscopy of the carbon D and G bands. The Raman results show that the IOM becomes progressively more graphite‐like with increasing intensity and duration of the HP treatment. The carbon structural transformations are accompanied by an increase in the release temperatures for IOM carbon and 36Ar during stepped combustion (the former to a greater extent than the latter for the most HP treated sample) when compared with the original untreated Orgueil (CI1) sample. The 36Ar/C ratio also appears to vary in response to HP treatment. Since 36Ar is a part of Q, its release temperature corresponds to that for Q oxidation. Thus, the structural transformations of Q and IOM upon HP treatment are not equal. These results correspond to observations of thermal metamorphism in the meteorite parent bodies, in particular those of type 4 enstatite chondrites, e.g., Indarch (EH4), where graphitized IOM oxidized at significantly higher temperatures than Q (Verchovsky et al. 2002). Our findings imply that Q is less graphitized than most of the macromolecular carbonaceous material present during parent body metamorphism and is thus a carbonaceous phase distinct from other meteoritic IOM.