X-ray powder diffraction study of the stability of clathrate hydrates in the presence of salts with relevance to the Martian cryosphere

1,2Emmal Safi, 2Stephen P.Thompson, 1Aneurin Evans, 2Sarah J.Day, 2Claire A.Murray, 2Annabelle R.Baker, 1Joana M.Oliveira, 1Jacco Th.van Loon
Geochimica et Cosmochimica Acta (in Press) Link to Article [https://doi.org/10.1016/j.gca.2018.10.034]
1Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
2Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
Copyright Elsevier

Water on the present day Martian surface is thought to exist in two thermally distinct sub-surface reservoirs: as ice in the cryosphere and as groundwater located deeper in the crust. These sub-surface environments are thought to contain saline, rather than pure, water and laboratory studies on whether or not clathrate hydrates can form in such environments are lacking. We fill this gap by performing synchrotron radiation X-ray powder diffraction to investigate the formation and evolution of clathrate hydrates in weak chloride solutions at CO2 pressures, and over temperature ranges, that are similar to those found in the Martian regolith. We have found that clathrate hydrates can form under conditions relevant to the Martian cryosphere, despite the presence of chloride salts. We find that the dissociation temperatures for CO2 clathrate hydrates formed in saline solutions are depressed by 10–20 K relative to those formed in pure water, depending on the nature of the salt and the CO2 pressure. We suggest that the inhibiting effect that salts such as MgCl2, CaCl2 and NaCl have on clathrate hydrate formation could also be related to the salts’ effect on the formation of the low temperature phase of ice. However, despite the inhibiting effect of the salts, we conclude that the presence of clathrate hydrates should still be possible under conditions likely to exist within the Martian cryosphere.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s