Carbonaceous Achondrites Northwest Africa 6704/6693: Milestones for Early Solar System Chronology and Genealogy

1Matthew E.Sanborn, 1Josh Wimpenny, 1Curtis D.Williams, 1Akane Yamakawa, 2Yuri Amelin, 3Anthony J.Irving, 1Qing-ZhuYin
Geochimica et Cosmochimica Acta (in Press) Link to Article []
1Department of Earth and Planetary Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
2Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601 Australia
3Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195 USA
Copyright Elsevier

Northwest Africa (NWA) 6704/6693 are medium- to coarse-grained achondrites with unique petrologic and geochemical traits that are distinct from the currently established meteorite groups. Here, we report on the extinct 26Al-26Mg and 53Mn-53Cr systems to establish fine-scale chronology of its formation and Cr and Ti isotopic anomalies to constrain the composition of the source reservoir of NWA 6704/6693. Excesses in the neutron-rich 54Cr and 50Ti isotopes, due to nucleosynthetic anomalies, separate NWA 6704/6693 from the vast majority of established achondrites and instead resemble the excesses seen among the carbonaceous chondrites; specifically, the CR-type chondrites. The excesses in these isotopes indicate a common feeding zone during accretion in the protoplanetary disk between the source of NWA 6704/6693 and that of the carbonaceous chondrites. The 26Al-26Mg data for pyroxene and plagioclase from NWA 6704 yield a (26Al/27Al)0 = (3.15 ± 0.38)×10-7 (MSWD = 0.49) and δ26Mg∗ = -0.004 ± 0.005 at the time of isotopic closure. This initial (26Al/27Al)0 translates to an absolute age of 4563.14 ± 0.38 Ma, relative to the D’Orbigny angrite. However, given the potential heterogeneity of 26Al, the D’Orbigny angrite might not be a good age anchor for the purpose of calculating 26Al-26Mg ages. The 26Al-26Mg age relative to another carbonaceous achondrite NWA 2976 is 4562.66 ± 0.60 Ma. The 53Mn-53Cr systematics of NWA 6704/6693 indicate a (53Mn/55Mn)0 of (2.59 ± 0.34)×10-6 (MSWD = 1.2) with an evolved initial ε53Cr of +0.14 ± 0.03. The (53Mn/55Mn)0 yields an 53Mn-53Cr age of 4562.17 ± 0.76 Ma relative to the D’Orbigny angrite. Concordant ages determined using the short-lived 26Al-26Mg and 53Mn-53Cr systems and extant 207Pb-206Pb system (4562.60±0.30 Ma for NWA 6704/6693; Amelin et al., 2018) indicate rapid cooling and nearly contemporaneous closing of multiple isotope systems. The ancient crystallization ages and positive 54Cr and 50Ti anomalies of NWA 6704/6693 indicate widespread melting and differentiation processes occurring in both non-carbonaceous (NC) and carbonaceous chondrite (CC) regions of the protoplanetary disk. Additionally, we report the Cr and Ti isotopic composition for a petrologic range of CR-type materials (CR2, CR6, and achondrites). The additional Cr and Ti isotopic data for these CR-type materials indicates a range in isotopic composition not previously observed based on CR2 chondrites alone.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s