Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories

1J.I.Simon,2J.N.Cuzzi1,2K.A.McCain,4M.J.Cato,5P.A.Christoffersen,6K.R.Fisher7P.Srinivasan8A.W.Tait9D.M.Olson2J.D.Scargle
Earth and Planetary Science Letters 494, 69-82 Link to Article [https://doi.org/10.1016/j.epsl.2018.04.021]
1Center for Isotope Cosmochemistry and Geochronology, ARES, EISD-XI3, NASA Johnson Space Center, Houston, TX 77058, USA
2NASA Ames Research Center, Moffett Field, CA 94035, USA
3The University of Chicago, Chicago, IL 60637, USA
4Western Carolina University, Cullowhee, NC, 28723, USA
5St. Lawrence University, Canton, NY, 13617, USA
6University of Cincinnati, Cincinnati, OH, 45219, USA
7Rutgers University, Piscataway, NJ, 08854, USA
8Monash University, Clayton, 3168, VIC, Australia
9BAERI, inc., Petaluma, CA 94952, USA
Copyright Elsevier

Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016, Friedrich et al., 2015, Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite “chondrule” size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary ‘dust’ rims on only a subset (∼15–20%) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct “lithologies” in NWA 5717 are nebular aggregates of chondrules. If ≥cm-sized aggregates of chondrules can form it will have implications for planet formation and suggests the sticking stage is where the preferential size physics is operating.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s