Extremely 54Cr- and 50Ti-rich Presolar Oxide Grains in a Primitive Meteorite: Formation in Rare Types of Supernovae and Implications for the Astrophysical Context of Solar System Birth

Larry R. Nittler, Conel M. O’D. Alexander, Nan Liu1, and Jianhua Wang
Astrophysical Journal Letters 856, L24 Link to Article [DOI: 10.3847/2041-8213/aab61f]
Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015, USA
1Present address: Dept. of Physics, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA.

We report the identification of 19 presolar oxide grains from the Orgueil CI meteorite with substantial enrichments in 54Cr, with 54Cr/52Cr ratios ranging from 1.2 to 56 times the solar value. The most enriched grains also exhibit enrichments at mass-50, most likely due in part to 50Ti, but close-to-normal or depleted 53Cr/52Cr ratios. There is a strong inverse relationship between 54Cr enrichment and grain size; the most extreme grains are all <80 nm in diameter. Comparison of the isotopic data with predictions of nucleosynthesis calculations indicate that these grains most likely originated in either rare, high-density Type Ia supernovae (SN Ia), or in electron-capture supernovae (ECSN), which may occur as the end stage of evolution for stars of mass 8–10 M . This is the first evidence for preserved presolar grains from either type of supernova. An ECSN origin is attractive, as these likely occur much more frequently than high-density SN Ia, and their evolutionary timescales (~20 Myr) are comparable to those of molecular clouds. Self-pollution of the Sun’s parent cloud from an ECSN may explain the heterogeneous distribution of n-rich isotopic anomalies in planetary materials, including a recently reported dichotomy in Mo isotopes in the solar system. The stellar origins of three grains with solar 54Cr/52Cr, but anomalies in 50Cr or 53Cr, as well as of a grain enriched in 57Fe, are unclear.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s