Constraints on the Density and Internal Strength of 1I/’Oumuamua

Andrew McNeill, David E. Trilling, and Michael Mommert
Astrophysical Journal Letters 857, L1 Link to Article [DOI: 10.3847/2041-8213/aab9ab]
Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011, USA

1I/’Oumuamua was discovered by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS 1) on 2017 October 19. Unlike all previously discovered minor planets, this object was determined to have eccentricity e > 1.0, suggesting an interstellar origin. Since this discovery and within the limited window of opportunity, several photometric and spectroscopic studies of the object have been made. Using the measured light curve amplitudes and rotation periods we find that, under the assumption of a triaxial ellipsoid, a density range 1500 < ρ < 2800 kg m−3 matches the observations and no significant cohesive strength is required. We also determine that an aspect ratio of 6 ± 1:1 is most likely after accounting for phase-angle effects and considering the potential effect of surface properties. This elongation is still remarkable, but less than some other estimates.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s