Origins of mass-dependent and mass-independent Ca isotope variations in meteoritic components and meteorites

1,2K.R. Bermingham, 2N. Gussone, 2,3K. Mezger, 2,4J. Krause
Geochmica et Cosmochimica Acta (in Press) Link to Article []
1Isotope Geochemistry Laboratory, Department of Geology, University of Maryland, College Park, MD-20740 USA
2Institut für Mineralogie, Westfälische Wilhelms-Universität, Corrensstraße 24, Münster, 48149 Germany
3Institut für Geologie, Universität Bern, Baltzerstrasse 1 + 3, Bern, 3012 Switzerland
4Helmholtz-Zentrum Dresden – Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany
Copyright Elsevier

The Ca isotope composition of meteorites and their components may vary due to mass-dependent and/or -independent isotope effects. In order to evaluate the origin of these effects, five amoeboid olivine aggregates (AOAs), three calcium aluminum inclusions (CAIs), five chondrules (C), a dark inclusion from Allende (CV3), two dark inclusions from North West Africa 753 (NWA 753; R3.9), and a whole rock sample of Orgueil (CI1) were analyzed. This is the first coupled mass-dependent and -independent Ca isotope dataset to include AOAs and dark inclusions. Where sample masses permit, Ca isotope data are reported with corresponding petrographic analyses and rare earth element (REE) relative abundance patterns. The CAIs and AOAs are enriched in light Ca isotopes (δ44/40Ca -5.32 to +0.72, where δ44/40Ca is reported relative to SRM 915a). Samples CAI 5 and AOA 1 have anomalous Group II REE patterns. These REE and δ44/40Ca data suggest that the CAI 5 and AOA 1 compositions were set via kinetic isotope fractionation during condensation and evaporation. The remaining samples show mass-dependent Ca isotope variations which cluster between δ44/40Ca +0.53 and +1.59, some of which are coupled with unfractionated REE abundance patterns. These meteoritic components likely formed through the coaccretion of the evaporative residue and condensate following Group II CAI formation or their chemical and isotopic signatures were decoupled (e.g., via nebular or parent-body alteration). The whole rock sample of Orgueil has a δ44/40Ca +0.67 ±0.18 which is in agreement with most published data. Parent-body alteration, terrestrial alteration, and variable sampling of Ca-rich meteoritic components can have an effect on δ44/40Ca compositions in whole rock meteorites.

Samples AOA 1, CAI 5, C 2, and C 4 display mass-independent 48/44Ca anomalies (ε48/44Ca +6 to +12) which are resolved from the standard composition. Other samples measured for these effects (AOA 5, CAI 1, CAI 2, C 3, D 1, D 2, D 3) possess the same 48/44Ca isotope composition as the standard within analytical uncertainty. These data indicate a heterogeneous distribution of 48Ca in the early solar nebula during formation of CAIs, AOAs, and chondrules. In a δ44/40Ca vs. ε48/44Ca plot, no strong correlation is evident which suggests that the thermal processing event which caused a heterogeneous distribution of ε48/44Ca in the solar nebula is unlikely to be directly related to the thermal processing event that caused coupled REE and Ca mass-dependent isotopic fractionation in meteoritic components.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s