Magnetization of Extraterrestrial Allende material may relate to terrestrial descend

1,2,3Gunther Kletetschka
Earth and Planetary Science Letters 487, 1-8 Link to Article [https://doi.org/10.1016/j.epsl.2018.01.020]
1Institute of Geology, Academy of Sciences of the Czech Republic, Czech Republic
2Faculty of Science, Charles University, Czech Republic
3Department of Geology and Geophysics, University of Alaska Fairbanks, USA
Copyright Elsevier

The origin of magnetization in Allende may have significant implications for our understanding of core formation/differentiation/dynamo processes in chondrite parent bodies. The magnetic Allende data may contain information that could constrain the magnetic history of Allende. The measurements on Allende chondrules reveal an existence of magnetization component that was likely acquired during the meteorite transit to terrestrial conditions. Both the pyrrhotite carrying magnetic remanence intensity and direction of the chondrules change erratically when subjecting the Allende meteorite’s chondrules to temperatures near 77 K and back to room temperature. Chondrules with more intense original magnetization are denser and contain larger inverse thermoremanent magnetization (ITRM). Temperature dependent monitoring of ITRM revealed that magnetization was acquired at temperature near 270 K. Such temperature is consistent with the condition when, in addition to temperature increase, the atmospheric uniaxial pressure applied during the meteorite entry on the porous material was responsible for meteorite break up in the atmosphere. During this process, collapse of the pore space in the matrix and some chondrules would generate crystalline anisotropy energy accumulation within pyrrhotite grains in form of parasitic magnetic transition.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s