Petrology, phase equilibria modelling, noble gas chronology and thermal constraints of the El Pozo L5 meteorite

1Pedro Corona-Chávez, 2María del Sol Hernández-Bernal, 3Pietro Vignola, 4Rufino Lozano-Santacruz, 5Juan Julio Morales-Contreras, 4Margarita Reyes-Salas, 5 Jesús Solé-Viñas, 6José F.Molina
Chemie der Erde (in Press) Link to Article []
1Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones en Ciencias de la Tierra, Edificio U, Ciudad Universitaria, Morelia, 58020, Mexico
2Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, 58190, Mexico
3Consiglio Nazionale delle Ricerche (CNR) – Istituto per la dinamica dei processi ambientali, via Botticelli 23, 20133 Milan, Italy
4Universidad Nacional Autónoma de México, Instituto de Geología, Circuito interior Ciudad Universitaria, 04510, Mexico
5Universidad Nacional Autónoma de México, Instituto de Geofísica, Unidad Morelia, 58190, Mexico
6Departamento de Mineralogía y Petrología, Universidad de Granada, Spain
Copyright Elsevier

We present the results of physical properties, petrography, bulk chemistry, mineral compositions, phase relations modelling and Noble gases study of the meteorite El Pozo. The petrography and mineral compositions indicate that the meteorite is an L5 chondrite with a low shock stage of S2-S3. Heterogenous weathering was preferentially along shock structures. Thermobarometric calculations indicate thermal equilibrium conditions between 768 °C and 925 °C at ∼4 to 6 kb, which are substantially consistent with the petrological metamorphism type 5. A pseudosection phase diagram is relatively consistent with the mineral assemblage observed and PT conditions calculated. Temperature vs. fO2 diagram shows that plagioclase compositional stability is very sensitive to Tschermack substitution in orthopyroxene, clinopyroxene and XAn plagioclase during the high temperature metamorphic process. Based on noble gases He, Ne, Ar and K contents a cosmogenic exposure age CRE of 1.9 Myr was calculated. The 21Ne would be totally cosmogenic, with no primordial Ne. The 21Ne/22Ne value (0.97) is higher than solar value. According to the cosmogenic Ne content, we argue that El Pozo chondrite originally had a pre-atmospheric mass of 9–10 kg, which would have been produced by a later collision after the recognized collision of the L-chondrite parent body ∼470 Ma ago.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s