Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury

1Zhou Zhang,1Anne Pommier
Journal of Geophysical Research, Planets (in Press) Link to Article [DOI: 10.1002/2017JE005390]
1University of California San Diego, Scripps Institution of Oceanography, Institute of Geophysics and Planetary Physics, La Jolla, CA, USA
Published by arrangement with John Wiley & Sons

We report electrical conductivity measurements on metal–olivine systems at 5 and 7 GPa and up to 1675°C in order to investigate the electrical properties of Core-Mantle Boundary (CMB) systems. Electrical experiments were conducted in the multi-anvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury’s interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury’s lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet’s structure and cooling history.

Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites

1Bérengère Mougel, 1,2Frédéric Moynier, 1Christa Göpel
Earth and Planetary Science Letters 481, 1-8 Link to Article [https://doi.org/10.1016/j.epsl.2017.10.018]
1Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, CNRS UMR 7154, Paris, France
2Institut Universitaire de France and Université Paris Diderot, Paris, France
Copyright Elsevier

Among the elements exhibiting non-mass dependent isotopic variations in meteorites, chromium (Cr) has been central in arguing for an isotopic homogeneity between the Earth and the Moon, thus questioning physical models of Moon formation. However, the Cr isotopic composition of the Moon relies on two samples only, which define an average value that is slightly different from the terrestrial standard. Here, by determining the Cr isotopic composition of 17 lunar, 9 terrestrial and 5 enstatite chondrite samples, we re-assess the isotopic similarity between these different planetary bodies, and provide the first robust estimate for the Moon. In average, terrestrial and enstatite samples show similar ε54Cr. On the other hand, lunar samples show variables excesses of 53Cr and 54Cr compared to terrestrial and enstatite chondrites samples with correlated ε53Cr and ε54Cr (per 10,000 deviation of the 53Cr/52Cr and 54Cr/52Cr ratios normalized to the 50Cr/52Cr ratio from the NIST SRM 3112a Cr standard). Unlike previous suggestions, we show for the first time that cosmic irradiation can affect significantly the Cr isotopic composition of lunar materials. Moreover, we also suggest that rather than spallation reactions, neutron capture effects are the dominant process controlling the Cr isotope composition of lunar igneous rocks. This is supported by the correlation between ε53Cr and ε54Cr, and 150Sm/152Sm ratios. After correction of these effects, the average ε54Cr of the Moon is indistinguishable from the terrestrial and enstatite chondrite materials reinforcing the idea of an Earth–Moon–enstatite chondrite system homogeneity. This is compatible with the most recent scenarios of Moon formation suggesting an efficient physical homogenization after a high-energy impact on a fast spinning Earth, and/or with an impactor originating from the same reservoir in the inner proto-planetary disk as the Earth and enstatite chondrites and having similar composition.

Volatile element signatures in the mantles of Earth, Moon, and Mars: Core formation fingerprints from Bi, Cd, In, and Sn

1K. Righter,2K. Pando,3N. Marin,2,1,4D. K. Ross,5M. Righter,2L. Danielson,5T. J. Lapen,6C. Lee
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.13005]
1Mailcode XI2, NASA Johnson Space Center, Houston, Texas, 77058, USA
2Jacobs JETS, NASA Johnson Space Center, Houston, Texas, USA
3School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
4University of Texas El Paso, Houston, Texas, USA
5Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA
6Department of Earth Science, Rice University, Houston, Texas, USA
Published by arrangement with John Wiley & Sons

Volatile element concentrations in planets are controlled by many factors such as precursor material composition, core formation, differentiation, magma ocean and magmatic degassing, and late accretionary processes. To better constrain the role of core formation, we report new experiments defining the effect of temperature, and metallic S and C content on the metal-silicate partition coefficient (or D(i) metal/silicate) of the volatile siderophile elements (VSE) Bi, Cd, In, and Sn. Additionally, the effect of pressure on metal-silicate partitioning between 1 and 3 GPa, and olivine-melt partitioning at 1 GPa have been studied for Bi, Cd, In, Sn, As, Sb, and Ge. Temperature clearly causes a decrease in D(i) metal/silicate for all elements. Sulfur and C have a large influence on activity coefficients in metallic Fe liquids, with C causing a decrease in D(i) metal/silicate, and S causing an increase. Pressure has only a small effect on D(Cd), D(In), and D(Ge) metal/silicate. Depletions of Bi, Cd, In, and Sn in the terrestrial and Martian mantles are consistent with high PTcore formation and metal-silicate equilibrium at the high temperatures indicated by previous studies. A late Hadean matte would influence Bi the most, due to its high D(sulfide/silicate) ~2000, but segregation of a matte would only reduce the mantle Bi content by 50%; all other less chalcophile elements (e.g., Sn, In, and Cd) would be minimally affected. The lunar depletions of highly VSE require a combination of core formation and an additional depletion mechanism—most likely the Moon-forming giant impact, or lunar magma ocean degassing.

Petrogenesis of D’Orbigny-like angrite meteorites and the role of spinel in the angrite source

1Seann J. McKibbin, 1Hugh St. C. O’Neill
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.13004]
1Research School of Earth Sciences, Australian National University, Acton, Australian Capital Territory, Australia
Published by arrangement with John Wiley & Sons

Angrite meteorites are samples of early planetesimal magmatic rocks, distinguished from more typical “basaltic eucrites” by compositions that are silica undersaturated, relatively oxidized, and with high CaO/Al2O3. The latter is not expected from nebular, chondritic materials that might form a primitive mantle, such as a source enriched in refractory inclusions with fixed CaO/Al2O3 (e.g., CV chondrite). Here we present results of “reversal” crystallization experiments for two possible parental angrite compositions (approximating the D’Orbigny meteorite) to investigate the role of spinel as a sink for Al2O3. This mineral has previously been produced with angritic melts during “forward” melting of CV chondrite and may be abundant in the angrite source. At oxidizing conditions, we confirm that spinel is a liquidus phase and that angritic magmas form near the olivine-anorthite-spinel-liquid peritectic. A stability gap separates Al-rich liquidus spinels and lower temperature spinels, the latter of which are similar to those in basaltic eucrites. Al-rich spinel is likely more abundant in the angritic source than other Fe-rich core-forming components such as metal or sulfide, and a CV chondrite-like composition generates most features of angrite magmas by fractionation of observed olivine and liquidus spinel. Direct CaO excess, via carbonate addition, is therefore limited. In this model, discrepancies remain for Li, Sc, Cr(-Al), and Ba, which may record local accretion conditions or early processing. The possible role of spinel as a sink for 26Al may have strong influence on the thermal evolution of the angrite parent body.

Investigating the response of biotite to impact metamorphism: Examples from the Steen River impact structure, Canada

1,2E.L. Walton,3T. G. Sharp,3J. Hu,4O. Tschauner
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.13011]
1Department of Physical Sciences, MacEwan University, Edmonton, Alberta, Canada
2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
3Arizona State University, Tempe, Arizona, USA
4Department of Geoscience, University of Nevada, Las Vegas, Nevada, USA
Published by arrangement with John Wiley & Sons

Impact metamorphic effects from quartz and feldspar and to a lesser extent olivine and pyroxene have been studied in detail. Comparatively, studies documenting shock effects in other minerals, such as double chain inosilicates, phyllosilicates, carbonates, and sulfates, are lacking. In this study, we investigate impact metamorphism recorded in crystalline basement rocks from the Steen River impact structure (SRIS), a 25 km diameter complex crater in NW Alberta, Canada. An array of advanced analytical techniques was used to characterize the breakdown of biotite in two distinct settings: along the margins of localized regions of shock melting and within granitic target rocks entrained as clasts in a breccia. In response to elevated temperature gradients along shock vein margins, biotite transformed at high pressure to an almandine-Ca/Fe majorite-rich garnet with a density of 4.2 g cm−3. The shock-produced garnets are poikilitic, with oxide and silicate glass inclusions. Areas interstitial to garnets are vesiculated, in support of models for the formation of shock veins via oscillatory slip, with deformation continuing during pressure release. Biotite within granitic clasts entrained within the hot breccia matrix thermally decomposed at ambient pressure to produce a fine-grained mineral assemblage of orthopyroxene + sanidine + titanomagnetite. These minerals are aligned to the (001) cleavage plane of the original crystal. In this and previous work, the transformation of an inosilicate (pargasite) and a phyllosilicate (biotite) to form garnet, an easily identifiable, robust mineral, has been documented. We contend that in deeply eroded astroblemes, high-pressure minerals that form within or in the environs of shock veins may serve as one of the possibly few surviving indicators of impact metamorphism.

Chemical and mineralogical characterization of the Mineo (Sicily, Italy) pallasite: A unique sample

1A. Zucchini,1M. Petrelli,1F. Frondini,2C. M. Petrone,3P. Sassi,1A. Di Michele,1S. Palmerini,1O. Trippella,1M. Busso
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.13002]
1Department of Physics and Geology, University of Perugia, Perugia, Italy
Section of Perugia, INFN, Perugia, Italy
2Department of Earth Sciences, The Natural History Museum, London, UK
3Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
Published by arrangement with John Wiley & Sons

The Mineo pallasite is characterized here for the first time. The only 42 g still available worldwide is part of the collection of the Department of Physics and Geology, University of Perugia. A multianalytical approach was used, joining field-emission scanning electron microscopy, Raman analysis, X-ray powder diffraction, electron-probe microanalysis, and laser ablation inductively coupled plasma mass spectrometry. Results highlighted that (1) the Mineo pallasite belongs to the Main Group pallasites; (2) the silicate component is essentially olivine, with no pyroxene component; (3) the olivine chemical composition varies in terms of both iron and trace elements; (4) the metal phase is essentially kamacite with the taenite mainly found in the plessite structure; (5) phosphide phases are present as schreibersite and barringerite. The observed compositional variability in olivines as well as their occurrence as both angular and rounded crystals suggest that the Mineo pallasite could have been derived from a large impact of a differentiated parent body with a larger solid body. The resulting pallasite conglomerate consists of the compositionally different olivines, likely coming from different areas of the same differentiated parent body, and the residual molten Fe-Ni.

Quartz–coesite–stishovite relations in shocked metaquartzites from the Vredefort impact structure, South Africa

1John G. Spray, 1Suporn Boonsue
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12997]
1Planetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick, Canada
Published by arrangement with John Wiley & Sons

Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of ~30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast–matrix or shock vein margin–matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault (~1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid–liquid interfaces and as anhedral crystals in the matrix. (5) With decreasing pressure–temperature, the matrix completes crystallization to yield a microcrystalline quasi-igneous texture comprising quartz–coesite–stishovite–kyanite–biotite–alkali feldspar and accessory phases. It is possible that the shock vein represents the locus of a thermal spike within the bulk shock, in which case there is no requirement for additional pressure (i.e., the bulk shock was ≃35 GPa). However, if that pressure was not realized from the main shock, then supplementary pressure excursions within the vein would have been required. These could have taken the form of localized reverberations from wave trapping, or implosion processes, including pore collapse, phase change–initiated volume reduction, and melt cavitation.