Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites

1Bérengère Mougel, 1,2Frédéric Moynier, 1Christa Göpel
Earth and Planetary Science Letters 481, 1-8 Link to Article []
1Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, CNRS UMR 7154, Paris, France
2Institut Universitaire de France and Université Paris Diderot, Paris, France
Copyright Elsevier

Among the elements exhibiting non-mass dependent isotopic variations in meteorites, chromium (Cr) has been central in arguing for an isotopic homogeneity between the Earth and the Moon, thus questioning physical models of Moon formation. However, the Cr isotopic composition of the Moon relies on two samples only, which define an average value that is slightly different from the terrestrial standard. Here, by determining the Cr isotopic composition of 17 lunar, 9 terrestrial and 5 enstatite chondrite samples, we re-assess the isotopic similarity between these different planetary bodies, and provide the first robust estimate for the Moon. In average, terrestrial and enstatite samples show similar ε54Cr. On the other hand, lunar samples show variables excesses of 53Cr and 54Cr compared to terrestrial and enstatite chondrites samples with correlated ε53Cr and ε54Cr (per 10,000 deviation of the 53Cr/52Cr and 54Cr/52Cr ratios normalized to the 50Cr/52Cr ratio from the NIST SRM 3112a Cr standard). Unlike previous suggestions, we show for the first time that cosmic irradiation can affect significantly the Cr isotopic composition of lunar materials. Moreover, we also suggest that rather than spallation reactions, neutron capture effects are the dominant process controlling the Cr isotope composition of lunar igneous rocks. This is supported by the correlation between ε53Cr and ε54Cr, and 150Sm/152Sm ratios. After correction of these effects, the average ε54Cr of the Moon is indistinguishable from the terrestrial and enstatite chondrite materials reinforcing the idea of an Earth–Moon–enstatite chondrite system homogeneity. This is compatible with the most recent scenarios of Moon formation suggesting an efficient physical homogenization after a high-energy impact on a fast spinning Earth, and/or with an impactor originating from the same reservoir in the inner proto-planetary disk as the Earth and enstatite chondrites and having similar composition.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s