Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars

1,2Steven M. Chemtob,2Ryan D. Nickerson,3Richard V. Morris,4David G. Agresti,2Jeffrey G. Catalano
Journal of Geophysical Research, Planets (in Press) Link to Article [DOI: 10.1002/2017JE005331]
1Department of Earth and Environmental Sciences, Temple University, Philadelphia, PA, U.S.A.
2Department of Earth and Planetary Sciences, Washington University, St. Louis, MO, U.S.A.
3EIS Directorate, NASA Johnson Space Center, Houston, TX, U.S.A.
4Department of Physics, University of Alabama at Birmingham, Birmingham, AL, U.S.A.
Published by arrangement with John Wiley & Sons

Surface conditions on early Mars were likely anoxic, similar to early Earth, but the timing of the evolution to oxic conditions characteristic of contemporary Mars is unresolved. Ferrous trioctahedral smectites are the thermodynamically predicted products of anoxic basalt weathering, but orbital analyses of Noachian-aged terrains find primarily Fe3+-bearing clay minerals. Rover-based detection of Fe2+-bearing trioctahedral smectites at Gale Crater suggest that ferrous smectites are the unoxidized progenitors of orbitally-detected ferric smectites. To assess this pathway, we conducted ambient-temperature oxidative alteration experiments on four synthetic ferrous smectites having molar Fe/(Mg+Fe) from 1.00 to 0.33. Smectite suspension in air-saturated solutions produced incomplete oxidation (24–38% Fe3+/ΣFe). Additional smectite oxidation occurred upon re-exposure to air-saturated solutions after anoxic hydrothermal recrystallization, which accelerated cation and charge redistribution in the octahedral sheet. Oxidation was accompanied by contraction of the octahedral sheet (d(060) decreased from 1.53-1.56 Å to 1.52 Å), consistent with a shift towards dioctahedral structure. Ferrous smectite oxidation by aqueous hydrogen peroxide solutions resulted in nearly complete Fe2+ oxidation but also led to partial Fe3+ ejection from the structure, producing nanoparticulate hematite. Reflectance spectra of oxidized smectites were characterized by (Fe3+,Mg)2-OH bands at 2.28-2.30 μm, consistent with oxidative formation of dioctahedral nontronite. Accordingly, ferrous smectites are plausible precursors to observed ferric smectites on Mars, and their presence in late-Noachian sedimentary units suggests that anoxic conditions may have persisted on Mars beyond the Noachian.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s