Distribution of aliphatic amines in CO, CV, and CK carbonaceous chondrites and relation to mineralogy and processing history

1,2C. Aponte,3Neyda M. Abreu,1Daniel P. Glavin,1Jason P. Dworkin,1Jamie E. Elsila
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12959]
1Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
2Department of Chemistry, Catholic University of America, Washington, DC, USA
3Earth Science Program, Pennsylvania State University—Du Bois Campus, Du Bois, Pennsylvania, USA
Published by arrangement with John Wiley & Sons

The analysis of water-soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in hot acid water extracts of the unaltered Antarctic carbonaceous chondrites, Dominion Range (DOM) 08006 (CO3) and Miller Range (MIL) 05013 (CO3), and the thermally altered meteorites, Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), Allan Hills (ALH) 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol g−1 of meteorite; these amounts are 1–3 orders of magnitude below those observed in carbonaceous chondrites from the CI, CM, and CR groups. The low-amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites, DOM 08006 and MIL 05013, do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine, and n-propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n-ω-amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n-amines.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s