Derivation of optical constants for nanophase hematite and application to modeled abundances from in-situ martian reflectance spectra

1Paul G. Lucey, 1David Trang, 2Jeffrey R. Johnson, 3Timothy D. Glotch
Icarus (in Press) Link to Article [https://doi.org/10.1016/j.icarus.2017.09.010]
1University of Hawai‘i at Mānoa, Hawai‘i Institute of Geophysics and Planetology, Honolulu, HI, 96822
2Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723
3Department of Geological Sciences, Stony Brook University, Stony Brook, NY 11794
Copyright Elsevier

Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite >10 nm in size are different from nanophase hematite <10 nm, there are not any sufficient optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.

Discuss

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s