Porous, S-bearing silica in metal-sulfide nodules and in the interchondrule clastic matrix in two EH3 chondrites

1S. W. Lehner,2P. Németh,3,4M. I. Petaev,1P. R. Buseck
Meteoritics & Planetary Science (in Press) Link to Article [DOI: 10.1111/maps.12940]
1School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
2Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
3Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
4Solar, Stellar, and Planetary Sciences, Harvard-Smithsonian CfA, Cambridge, Massachusetts, USA
Published by arrangement with John Wiley & Sons

Two new occurrences of porous, S-bearing, amorphous silica are described within metal-sulfide nodules (MSN) and as interchondrule patches in EH3 chondrites SAH 97072 and ALH 84170. This porous amorphous material, which was first reported from sulfide-bearing chondrules, consists of sinewy SiO2-rich areas containing S with minor Na or Ca as well as Fe, Mg, and Al. Some pores contain minerals including pyrite, pyrrhotite, and anhydrite. Most pores appear vacant or contain unidentified material that is unstable under analytical conditions. Niningerite, olivine, enstatite, albite, and kumdykolite occur enclosed within porous silica patches. Porous silica is commonly interfingered with cristobalite suggesting its amorphous structure resulted from high-temperature quenching. We interpret the S-bearing porous silica to be a product of silicate sulfidation, and the Na, Ca, Fe, Mg, and Al detectable within this material are chemical residues of sulfidized silicates and metal. The occurrence of porous silica in the cores of MSN, which are considered to be pre-accretionary objects, suggests the sulfidizing conditions occurred prior to final parent-body solidification. Ubiquitous S-bearing porous silica among sulfide-bearing chondrules, MSN, and in the interchondrule clastic matrix, suggests that similar sulfidizing conditions affected all the constituents of these EH3 chondrites.


Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s